Spaces:
Runtime error
Runtime error
import logging | |
import annotator.uniformer.mmcv as mmcv | |
import torch.nn as nn | |
from annotator.uniformer.mmcv.cnn import ConvModule, constant_init, kaiming_init | |
from annotator.uniformer.mmcv.cnn.bricks import Conv2dAdaptivePadding | |
from annotator.uniformer.mmcv.runner import load_checkpoint | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from ..builder import BACKBONES | |
from ..utils import InvertedResidualV3 as InvertedResidual | |
class MobileNetV3(nn.Module): | |
"""MobileNetV3 backbone. | |
This backbone is the improved implementation of `Searching for MobileNetV3 | |
<https://ieeexplore.ieee.org/document/9008835>`_. | |
Args: | |
arch (str): Architecture of mobilnetv3, from {'small', 'large'}. | |
Default: 'small'. | |
conv_cfg (dict): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
out_indices (tuple[int]): Output from which layer. | |
Default: (0, 1, 12). | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Default: -1, which means not freezing any parameters. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save | |
some memory while slowing down the training speed. | |
Default: False. | |
""" | |
# Parameters to build each block: | |
# [kernel size, mid channels, out channels, with_se, act type, stride] | |
arch_settings = { | |
'small': [[3, 16, 16, True, 'ReLU', 2], # block0 layer1 os=4 | |
[3, 72, 24, False, 'ReLU', 2], # block1 layer2 os=8 | |
[3, 88, 24, False, 'ReLU', 1], | |
[5, 96, 40, True, 'HSwish', 2], # block2 layer4 os=16 | |
[5, 240, 40, True, 'HSwish', 1], | |
[5, 240, 40, True, 'HSwish', 1], | |
[5, 120, 48, True, 'HSwish', 1], # block3 layer7 os=16 | |
[5, 144, 48, True, 'HSwish', 1], | |
[5, 288, 96, True, 'HSwish', 2], # block4 layer9 os=32 | |
[5, 576, 96, True, 'HSwish', 1], | |
[5, 576, 96, True, 'HSwish', 1]], | |
'large': [[3, 16, 16, False, 'ReLU', 1], # block0 layer1 os=2 | |
[3, 64, 24, False, 'ReLU', 2], # block1 layer2 os=4 | |
[3, 72, 24, False, 'ReLU', 1], | |
[5, 72, 40, True, 'ReLU', 2], # block2 layer4 os=8 | |
[5, 120, 40, True, 'ReLU', 1], | |
[5, 120, 40, True, 'ReLU', 1], | |
[3, 240, 80, False, 'HSwish', 2], # block3 layer7 os=16 | |
[3, 200, 80, False, 'HSwish', 1], | |
[3, 184, 80, False, 'HSwish', 1], | |
[3, 184, 80, False, 'HSwish', 1], | |
[3, 480, 112, True, 'HSwish', 1], # block4 layer11 os=16 | |
[3, 672, 112, True, 'HSwish', 1], | |
[5, 672, 160, True, 'HSwish', 2], # block5 layer13 os=32 | |
[5, 960, 160, True, 'HSwish', 1], | |
[5, 960, 160, True, 'HSwish', 1]] | |
} # yapf: disable | |
def __init__(self, | |
arch='small', | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
out_indices=(0, 1, 12), | |
frozen_stages=-1, | |
reduction_factor=1, | |
norm_eval=False, | |
with_cp=False): | |
super(MobileNetV3, self).__init__() | |
assert arch in self.arch_settings | |
assert isinstance(reduction_factor, int) and reduction_factor > 0 | |
assert mmcv.is_tuple_of(out_indices, int) | |
for index in out_indices: | |
if index not in range(0, len(self.arch_settings[arch]) + 2): | |
raise ValueError( | |
'the item in out_indices must in ' | |
f'range(0, {len(self.arch_settings[arch])+2}). ' | |
f'But received {index}') | |
if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2): | |
raise ValueError('frozen_stages must be in range(-1, ' | |
f'{len(self.arch_settings[arch])+2}). ' | |
f'But received {frozen_stages}') | |
self.arch = arch | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.reduction_factor = reduction_factor | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
self.layers = self._make_layer() | |
def _make_layer(self): | |
layers = [] | |
# build the first layer (layer0) | |
in_channels = 16 | |
layer = ConvModule( | |
in_channels=3, | |
out_channels=in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=dict(type='Conv2dAdaptivePadding'), | |
norm_cfg=self.norm_cfg, | |
act_cfg=dict(type='HSwish')) | |
self.add_module('layer0', layer) | |
layers.append('layer0') | |
layer_setting = self.arch_settings[self.arch] | |
for i, params in enumerate(layer_setting): | |
(kernel_size, mid_channels, out_channels, with_se, act, | |
stride) = params | |
if self.arch == 'large' and i >= 12 or self.arch == 'small' and \ | |
i >= 8: | |
mid_channels = mid_channels // self.reduction_factor | |
out_channels = out_channels // self.reduction_factor | |
if with_se: | |
se_cfg = dict( | |
channels=mid_channels, | |
ratio=4, | |
act_cfg=(dict(type='ReLU'), | |
dict(type='HSigmoid', bias=3.0, divisor=6.0))) | |
else: | |
se_cfg = None | |
layer = InvertedResidual( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
mid_channels=mid_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
se_cfg=se_cfg, | |
with_expand_conv=(in_channels != mid_channels), | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=dict(type=act), | |
with_cp=self.with_cp) | |
in_channels = out_channels | |
layer_name = 'layer{}'.format(i + 1) | |
self.add_module(layer_name, layer) | |
layers.append(layer_name) | |
# build the last layer | |
# block5 layer12 os=32 for small model | |
# block6 layer16 os=32 for large model | |
layer = ConvModule( | |
in_channels=in_channels, | |
out_channels=576 if self.arch == 'small' else 960, | |
kernel_size=1, | |
stride=1, | |
dilation=4, | |
padding=0, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=dict(type='HSwish')) | |
layer_name = 'layer{}'.format(len(layer_setting) + 1) | |
self.add_module(layer_name, layer) | |
layers.append(layer_name) | |
# next, convert backbone MobileNetV3 to a semantic segmentation version | |
if self.arch == 'small': | |
self.layer4.depthwise_conv.conv.stride = (1, 1) | |
self.layer9.depthwise_conv.conv.stride = (1, 1) | |
for i in range(4, len(layers)): | |
layer = getattr(self, layers[i]) | |
if isinstance(layer, InvertedResidual): | |
modified_module = layer.depthwise_conv.conv | |
else: | |
modified_module = layer.conv | |
if i < 9: | |
modified_module.dilation = (2, 2) | |
pad = 2 | |
else: | |
modified_module.dilation = (4, 4) | |
pad = 4 | |
if not isinstance(modified_module, Conv2dAdaptivePadding): | |
# Adjust padding | |
pad *= (modified_module.kernel_size[0] - 1) // 2 | |
modified_module.padding = (pad, pad) | |
else: | |
self.layer7.depthwise_conv.conv.stride = (1, 1) | |
self.layer13.depthwise_conv.conv.stride = (1, 1) | |
for i in range(7, len(layers)): | |
layer = getattr(self, layers[i]) | |
if isinstance(layer, InvertedResidual): | |
modified_module = layer.depthwise_conv.conv | |
else: | |
modified_module = layer.conv | |
if i < 13: | |
modified_module.dilation = (2, 2) | |
pad = 2 | |
else: | |
modified_module.dilation = (4, 4) | |
pad = 4 | |
if not isinstance(modified_module, Conv2dAdaptivePadding): | |
# Adjust padding | |
pad *= (modified_module.kernel_size[0] - 1) // 2 | |
modified_module.padding = (pad, pad) | |
return layers | |
def init_weights(self, pretrained=None): | |
if isinstance(pretrained, str): | |
logger = logging.getLogger() | |
load_checkpoint(self, pretrained, strict=False, logger=logger) | |
elif pretrained is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
kaiming_init(m) | |
elif isinstance(m, nn.BatchNorm2d): | |
constant_init(m, 1) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def forward(self, x): | |
outs = [] | |
for i, layer_name in enumerate(self.layers): | |
layer = getattr(self, layer_name) | |
x = layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return outs | |
def _freeze_stages(self): | |
for i in range(self.frozen_stages + 1): | |
layer = getattr(self, f'layer{i}') | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(MobileNetV3, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, _BatchNorm): | |
m.eval() | |