Spaces:
Runtime error
Runtime error
import logging | |
import torch.nn as nn | |
from annotator.uniformer.mmcv.cnn import ConvModule, constant_init, kaiming_init | |
from annotator.uniformer.mmcv.runner import load_checkpoint | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from ..builder import BACKBONES | |
from ..utils import InvertedResidual, make_divisible | |
class MobileNetV2(nn.Module): | |
"""MobileNetV2 backbone. | |
Args: | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Default: 1.0. | |
strides (Sequence[int], optional): Strides of the first block of each | |
layer. If not specified, default config in ``arch_setting`` will | |
be used. | |
dilations (Sequence[int]): Dilation of each layer. | |
out_indices (None or Sequence[int]): Output from which stages. | |
Default: (7, ). | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Default: -1, which means not freezing any parameters. | |
conv_cfg (dict): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU6'). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
""" | |
# Parameters to build layers. 3 parameters are needed to construct a | |
# layer, from left to right: expand_ratio, channel, num_blocks. | |
arch_settings = [[1, 16, 1], [6, 24, 2], [6, 32, 3], [6, 64, 4], | |
[6, 96, 3], [6, 160, 3], [6, 320, 1]] | |
def __init__(self, | |
widen_factor=1., | |
strides=(1, 2, 2, 2, 1, 2, 1), | |
dilations=(1, 1, 1, 1, 1, 1, 1), | |
out_indices=(1, 2, 4, 6), | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU6'), | |
norm_eval=False, | |
with_cp=False): | |
super(MobileNetV2, self).__init__() | |
self.widen_factor = widen_factor | |
self.strides = strides | |
self.dilations = dilations | |
assert len(strides) == len(dilations) == len(self.arch_settings) | |
self.out_indices = out_indices | |
for index in out_indices: | |
if index not in range(0, 7): | |
raise ValueError('the item in out_indices must in ' | |
f'range(0, 8). But received {index}') | |
if frozen_stages not in range(-1, 7): | |
raise ValueError('frozen_stages must be in range(-1, 7). ' | |
f'But received {frozen_stages}') | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
self.in_channels = make_divisible(32 * widen_factor, 8) | |
self.conv1 = ConvModule( | |
in_channels=3, | |
out_channels=self.in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
self.layers = [] | |
for i, layer_cfg in enumerate(self.arch_settings): | |
expand_ratio, channel, num_blocks = layer_cfg | |
stride = self.strides[i] | |
dilation = self.dilations[i] | |
out_channels = make_divisible(channel * widen_factor, 8) | |
inverted_res_layer = self.make_layer( | |
out_channels=out_channels, | |
num_blocks=num_blocks, | |
stride=stride, | |
dilation=dilation, | |
expand_ratio=expand_ratio) | |
layer_name = f'layer{i + 1}' | |
self.add_module(layer_name, inverted_res_layer) | |
self.layers.append(layer_name) | |
def make_layer(self, out_channels, num_blocks, stride, dilation, | |
expand_ratio): | |
"""Stack InvertedResidual blocks to build a layer for MobileNetV2. | |
Args: | |
out_channels (int): out_channels of block. | |
num_blocks (int): Number of blocks. | |
stride (int): Stride of the first block. | |
dilation (int): Dilation of the first block. | |
expand_ratio (int): Expand the number of channels of the | |
hidden layer in InvertedResidual by this ratio. | |
""" | |
layers = [] | |
for i in range(num_blocks): | |
layers.append( | |
InvertedResidual( | |
self.in_channels, | |
out_channels, | |
stride if i == 0 else 1, | |
expand_ratio=expand_ratio, | |
dilation=dilation if i == 0 else 1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
with_cp=self.with_cp)) | |
self.in_channels = out_channels | |
return nn.Sequential(*layers) | |
def init_weights(self, pretrained=None): | |
if isinstance(pretrained, str): | |
logger = logging.getLogger() | |
load_checkpoint(self, pretrained, strict=False, logger=logger) | |
elif pretrained is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
kaiming_init(m) | |
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): | |
constant_init(m, 1) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def forward(self, x): | |
x = self.conv1(x) | |
outs = [] | |
for i, layer_name in enumerate(self.layers): | |
layer = getattr(self, layer_name) | |
x = layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
if len(outs) == 1: | |
return outs[0] | |
else: | |
return tuple(outs) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
for param in self.conv1.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
layer = getattr(self, f'layer{i}') | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(MobileNetV2, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, _BatchNorm): | |
m.eval() | |