Spaces:
Runtime error
Runtime error
import warnings | |
from mmcv.utils import Registry, build_from_cfg | |
from torch import nn | |
BACKBONES = Registry('backbone') | |
NECKS = Registry('neck') | |
ROI_EXTRACTORS = Registry('roi_extractor') | |
SHARED_HEADS = Registry('shared_head') | |
HEADS = Registry('head') | |
LOSSES = Registry('loss') | |
DETECTORS = Registry('detector') | |
def build(cfg, registry, default_args=None): | |
"""Build a module. | |
Args: | |
cfg (dict, list[dict]): The config of modules, is is either a dict | |
or a list of configs. | |
registry (:obj:`Registry`): A registry the module belongs to. | |
default_args (dict, optional): Default arguments to build the module. | |
Defaults to None. | |
Returns: | |
nn.Module: A built nn module. | |
""" | |
if isinstance(cfg, list): | |
modules = [ | |
build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg | |
] | |
return nn.Sequential(*modules) | |
else: | |
return build_from_cfg(cfg, registry, default_args) | |
def build_backbone(cfg): | |
"""Build backbone.""" | |
return build(cfg, BACKBONES) | |
def build_neck(cfg): | |
"""Build neck.""" | |
return build(cfg, NECKS) | |
def build_roi_extractor(cfg): | |
"""Build roi extractor.""" | |
return build(cfg, ROI_EXTRACTORS) | |
def build_shared_head(cfg): | |
"""Build shared head.""" | |
return build(cfg, SHARED_HEADS) | |
def build_head(cfg): | |
"""Build head.""" | |
return build(cfg, HEADS) | |
def build_loss(cfg): | |
"""Build loss.""" | |
return build(cfg, LOSSES) | |
def build_detector(cfg, train_cfg=None, test_cfg=None): | |
"""Build detector.""" | |
if train_cfg is not None or test_cfg is not None: | |
warnings.warn( | |
'train_cfg and test_cfg is deprecated, ' | |
'please specify them in model', UserWarning) | |
assert cfg.get('train_cfg') is None or train_cfg is None, \ | |
'train_cfg specified in both outer field and model field ' | |
assert cfg.get('test_cfg') is None or test_cfg is None, \ | |
'test_cfg specified in both outer field and model field ' | |
return build(cfg, DETECTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg)) | |