Spaces:
Runtime error
Runtime error
import torch | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext('_ext', [ | |
'points_in_boxes_part_forward', 'points_in_boxes_cpu_forward', | |
'points_in_boxes_all_forward' | |
]) | |
def points_in_boxes_part(points, boxes): | |
"""Find the box in which each point is (CUDA). | |
Args: | |
points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate | |
boxes (torch.Tensor): [B, T, 7], | |
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz] in | |
LiDAR/DEPTH coordinate, (x, y, z) is the bottom center | |
Returns: | |
box_idxs_of_pts (torch.Tensor): (B, M), default background = -1 | |
""" | |
assert points.shape[0] == boxes.shape[0], \ | |
'Points and boxes should have the same batch size, ' \ | |
f'but got {points.shape[0]} and {boxes.shape[0]}' | |
assert boxes.shape[2] == 7, \ | |
'boxes dimension should be 7, ' \ | |
f'but got unexpected shape {boxes.shape[2]}' | |
assert points.shape[2] == 3, \ | |
'points dimension should be 3, ' \ | |
f'but got unexpected shape {points.shape[2]}' | |
batch_size, num_points, _ = points.shape | |
box_idxs_of_pts = points.new_zeros((batch_size, num_points), | |
dtype=torch.int).fill_(-1) | |
# If manually put the tensor 'points' or 'boxes' on a device | |
# which is not the current device, some temporary variables | |
# will be created on the current device in the cuda op, | |
# and the output will be incorrect. | |
# Therefore, we force the current device to be the same | |
# as the device of the tensors if it was not. | |
# Please refer to https://github.com/open-mmlab/mmdetection3d/issues/305 | |
# for the incorrect output before the fix. | |
points_device = points.get_device() | |
assert points_device == boxes.get_device(), \ | |
'Points and boxes should be put on the same device' | |
if torch.cuda.current_device() != points_device: | |
torch.cuda.set_device(points_device) | |
ext_module.points_in_boxes_part_forward(boxes.contiguous(), | |
points.contiguous(), | |
box_idxs_of_pts) | |
return box_idxs_of_pts | |
def points_in_boxes_cpu(points, boxes): | |
"""Find all boxes in which each point is (CPU). The CPU version of | |
:meth:`points_in_boxes_all`. | |
Args: | |
points (torch.Tensor): [B, M, 3], [x, y, z] in | |
LiDAR/DEPTH coordinate | |
boxes (torch.Tensor): [B, T, 7], | |
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz], | |
(x, y, z) is the bottom center. | |
Returns: | |
box_idxs_of_pts (torch.Tensor): (B, M, T), default background = 0. | |
""" | |
assert points.shape[0] == boxes.shape[0], \ | |
'Points and boxes should have the same batch size, ' \ | |
f'but got {points.shape[0]} and {boxes.shape[0]}' | |
assert boxes.shape[2] == 7, \ | |
'boxes dimension should be 7, ' \ | |
f'but got unexpected shape {boxes.shape[2]}' | |
assert points.shape[2] == 3, \ | |
'points dimension should be 3, ' \ | |
f'but got unexpected shape {points.shape[2]}' | |
batch_size, num_points, _ = points.shape | |
num_boxes = boxes.shape[1] | |
point_indices = points.new_zeros((batch_size, num_boxes, num_points), | |
dtype=torch.int) | |
for b in range(batch_size): | |
ext_module.points_in_boxes_cpu_forward(boxes[b].float().contiguous(), | |
points[b].float().contiguous(), | |
point_indices[b]) | |
point_indices = point_indices.transpose(1, 2) | |
return point_indices | |
def points_in_boxes_all(points, boxes): | |
"""Find all boxes in which each point is (CUDA). | |
Args: | |
points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate | |
boxes (torch.Tensor): [B, T, 7], | |
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz], | |
(x, y, z) is the bottom center. | |
Returns: | |
box_idxs_of_pts (torch.Tensor): (B, M, T), default background = 0. | |
""" | |
assert boxes.shape[0] == points.shape[0], \ | |
'Points and boxes should have the same batch size, ' \ | |
f'but got {boxes.shape[0]} and {boxes.shape[0]}' | |
assert boxes.shape[2] == 7, \ | |
'boxes dimension should be 7, ' \ | |
f'but got unexpected shape {boxes.shape[2]}' | |
assert points.shape[2] == 3, \ | |
'points dimension should be 3, ' \ | |
f'but got unexpected shape {points.shape[2]}' | |
batch_size, num_points, _ = points.shape | |
num_boxes = boxes.shape[1] | |
box_idxs_of_pts = points.new_zeros((batch_size, num_points, num_boxes), | |
dtype=torch.int).fill_(0) | |
# Same reason as line 25-32 | |
points_device = points.get_device() | |
assert points_device == boxes.get_device(), \ | |
'Points and boxes should be put on the same device' | |
if torch.cuda.current_device() != points_device: | |
torch.cuda.set_device(points_device) | |
ext_module.points_in_boxes_all_forward(boxes.contiguous(), | |
points.contiguous(), | |
box_idxs_of_pts) | |
return box_idxs_of_pts | |