File size: 11,062 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import platform
import shutil
import time
import warnings

import torch
from torch.optim import Optimizer

import annotator.uniformer.mmcv as mmcv
from .base_runner import BaseRunner
from .builder import RUNNERS
from .checkpoint import save_checkpoint
from .hooks import IterTimerHook
from .utils import get_host_info


class IterLoader:

    def __init__(self, dataloader):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._epoch = 0

    @property
    def epoch(self):
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            if hasattr(self._dataloader.sampler, 'set_epoch'):
                self._dataloader.sampler.set_epoch(self._epoch)
            time.sleep(2)  # Prevent possible deadlock during epoch transition
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)

        return data

    def __len__(self):
        return len(self._dataloader)


@RUNNERS.register_module()
class IterBasedRunner(BaseRunner):
    """Iteration-based Runner.

    This runner train models iteration by iteration.
    """

    def train(self, data_loader, **kwargs):
        self.model.train()
        self.mode = 'train'
        self.data_loader = data_loader
        self._epoch = data_loader.epoch
        data_batch = next(data_loader)
        self.call_hook('before_train_iter')
        outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
        if not isinstance(outputs, dict):
            raise TypeError('model.train_step() must return a dict')
        if 'log_vars' in outputs:
            self.log_buffer.update(outputs['log_vars'], outputs['num_samples'])
        self.outputs = outputs
        self.call_hook('after_train_iter')
        self._inner_iter += 1
        self._iter += 1

    @torch.no_grad()
    def val(self, data_loader, **kwargs):
        self.model.eval()
        self.mode = 'val'
        self.data_loader = data_loader
        data_batch = next(data_loader)
        self.call_hook('before_val_iter')
        outputs = self.model.val_step(data_batch, **kwargs)
        if not isinstance(outputs, dict):
            raise TypeError('model.val_step() must return a dict')
        if 'log_vars' in outputs:
            self.log_buffer.update(outputs['log_vars'], outputs['num_samples'])
        self.outputs = outputs
        self.call_hook('after_val_iter')
        self._inner_iter += 1

    def run(self, data_loaders, workflow, max_iters=None, **kwargs):
        """Start running.

        Args:
            data_loaders (list[:obj:`DataLoader`]): Dataloaders for training
                and validation.
            workflow (list[tuple]): A list of (phase, iters) to specify the
                running order and iterations. E.g, [('train', 10000),
                ('val', 1000)] means running 10000 iterations for training and
                1000 iterations for validation, iteratively.
        """
        assert isinstance(data_loaders, list)
        assert mmcv.is_list_of(workflow, tuple)
        assert len(data_loaders) == len(workflow)
        if max_iters is not None:
            warnings.warn(
                'setting max_iters in run is deprecated, '
                'please set max_iters in runner_config', DeprecationWarning)
            self._max_iters = max_iters
        assert self._max_iters is not None, (
            'max_iters must be specified during instantiation')

        work_dir = self.work_dir if self.work_dir is not None else 'NONE'
        self.logger.info('Start running, host: %s, work_dir: %s',
                         get_host_info(), work_dir)
        self.logger.info('Hooks will be executed in the following order:\n%s',
                         self.get_hook_info())
        self.logger.info('workflow: %s, max: %d iters', workflow,
                         self._max_iters)
        self.call_hook('before_run')

        iter_loaders = [IterLoader(x) for x in data_loaders]

        self.call_hook('before_epoch')

        while self.iter < self._max_iters:
            for i, flow in enumerate(workflow):
                self._inner_iter = 0
                mode, iters = flow
                if not isinstance(mode, str) or not hasattr(self, mode):
                    raise ValueError(
                        'runner has no method named "{}" to run a workflow'.
                        format(mode))
                iter_runner = getattr(self, mode)
                for _ in range(iters):
                    if mode == 'train' and self.iter >= self._max_iters:
                        break
                    iter_runner(iter_loaders[i], **kwargs)

        time.sleep(1)  # wait for some hooks like loggers to finish
        self.call_hook('after_epoch')
        self.call_hook('after_run')

    def resume(self,
               checkpoint,
               resume_optimizer=True,
               map_location='default'):
        """Resume model from checkpoint.

        Args:
            checkpoint (str): Checkpoint to resume from.
            resume_optimizer (bool, optional): Whether resume the optimizer(s)
                if the checkpoint file includes optimizer(s). Default to True.
            map_location (str, optional): Same as :func:`torch.load`.
                Default to 'default'.
        """
        if map_location == 'default':
            device_id = torch.cuda.current_device()
            checkpoint = self.load_checkpoint(
                checkpoint,
                map_location=lambda storage, loc: storage.cuda(device_id))
        else:
            checkpoint = self.load_checkpoint(
                checkpoint, map_location=map_location)

        self._epoch = checkpoint['meta']['epoch']
        self._iter = checkpoint['meta']['iter']
        self._inner_iter = checkpoint['meta']['iter']
        if 'optimizer' in checkpoint and resume_optimizer:
            if isinstance(self.optimizer, Optimizer):
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            elif isinstance(self.optimizer, dict):
                for k in self.optimizer.keys():
                    self.optimizer[k].load_state_dict(
                        checkpoint['optimizer'][k])
            else:
                raise TypeError(
                    'Optimizer should be dict or torch.optim.Optimizer '
                    f'but got {type(self.optimizer)}')

        self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}')

    def save_checkpoint(self,
                        out_dir,
                        filename_tmpl='iter_{}.pth',
                        meta=None,
                        save_optimizer=True,
                        create_symlink=True):
        """Save checkpoint to file.

        Args:
            out_dir (str): Directory to save checkpoint files.
            filename_tmpl (str, optional): Checkpoint file template.
                Defaults to 'iter_{}.pth'.
            meta (dict, optional): Metadata to be saved in checkpoint.
                Defaults to None.
            save_optimizer (bool, optional): Whether save optimizer.
                Defaults to True.
            create_symlink (bool, optional): Whether create symlink to the
                latest checkpoint file. Defaults to True.
        """
        if meta is None:
            meta = {}
        elif not isinstance(meta, dict):
            raise TypeError(
                f'meta should be a dict or None, but got {type(meta)}')
        if self.meta is not None:
            meta.update(self.meta)
            # Note: meta.update(self.meta) should be done before
            # meta.update(epoch=self.epoch + 1, iter=self.iter) otherwise
            # there will be problems with resumed checkpoints.
            # More details in https://github.com/open-mmlab/mmcv/pull/1108
        meta.update(epoch=self.epoch + 1, iter=self.iter)

        filename = filename_tmpl.format(self.iter + 1)
        filepath = osp.join(out_dir, filename)
        optimizer = self.optimizer if save_optimizer else None
        save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta)
        # in some environments, `os.symlink` is not supported, you may need to
        # set `create_symlink` to False
        if create_symlink:
            dst_file = osp.join(out_dir, 'latest.pth')
            if platform.system() != 'Windows':
                mmcv.symlink(filename, dst_file)
            else:
                shutil.copy(filepath, dst_file)

    def register_training_hooks(self,
                                lr_config,
                                optimizer_config=None,
                                checkpoint_config=None,
                                log_config=None,
                                momentum_config=None,
                                custom_hooks_config=None):
        """Register default hooks for iter-based training.

        Checkpoint hook, optimizer stepper hook and logger hooks will be set to
        `by_epoch=False` by default.

        Default hooks include:

        +----------------------+-------------------------+
        | Hooks                | Priority                |
        +======================+=========================+
        | LrUpdaterHook        | VERY_HIGH (10)          |
        +----------------------+-------------------------+
        | MomentumUpdaterHook  | HIGH (30)               |
        +----------------------+-------------------------+
        | OptimizerStepperHook | ABOVE_NORMAL (40)       |
        +----------------------+-------------------------+
        | CheckpointSaverHook  | NORMAL (50)             |
        +----------------------+-------------------------+
        | IterTimerHook        | LOW (70)                |
        +----------------------+-------------------------+
        | LoggerHook(s)        | VERY_LOW (90)           |
        +----------------------+-------------------------+
        | CustomHook(s)        | defaults to NORMAL (50) |
        +----------------------+-------------------------+

        If custom hooks have same priority with default hooks, custom hooks
        will be triggered after default hooks.
        """
        if checkpoint_config is not None:
            checkpoint_config.setdefault('by_epoch', False)
        if lr_config is not None:
            lr_config.setdefault('by_epoch', False)
        if log_config is not None:
            for info in log_config['hooks']:
                info.setdefault('by_epoch', False)
        super(IterBasedRunner, self).register_training_hooks(
            lr_config=lr_config,
            momentum_config=momentum_config,
            optimizer_config=optimizer_config,
            checkpoint_config=checkpoint_config,
            log_config=log_config,
            timer_config=IterTimerHook(),
            custom_hooks_config=custom_hooks_config)