Spaces:
Runtime error
Runtime error
File size: 26,034 Bytes
b334e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
# Copyright (c) OpenMMLab. All rights reserved.
import numbers
from math import cos, pi
import annotator.uniformer.mmcv as mmcv
from .hook import HOOKS, Hook
class LrUpdaterHook(Hook):
"""LR Scheduler in MMCV.
Args:
by_epoch (bool): LR changes epoch by epoch
warmup (string): Type of warmup used. It can be None(use no warmup),
'constant', 'linear' or 'exp'
warmup_iters (int): The number of iterations or epochs that warmup
lasts
warmup_ratio (float): LR used at the beginning of warmup equals to
warmup_ratio * initial_lr
warmup_by_epoch (bool): When warmup_by_epoch == True, warmup_iters
means the number of epochs that warmup lasts, otherwise means the
number of iteration that warmup lasts
"""
def __init__(self,
by_epoch=True,
warmup=None,
warmup_iters=0,
warmup_ratio=0.1,
warmup_by_epoch=False):
# validate the "warmup" argument
if warmup is not None:
if warmup not in ['constant', 'linear', 'exp']:
raise ValueError(
f'"{warmup}" is not a supported type for warming up, valid'
' types are "constant" and "linear"')
if warmup is not None:
assert warmup_iters > 0, \
'"warmup_iters" must be a positive integer'
assert 0 < warmup_ratio <= 1.0, \
'"warmup_ratio" must be in range (0,1]'
self.by_epoch = by_epoch
self.warmup = warmup
self.warmup_iters = warmup_iters
self.warmup_ratio = warmup_ratio
self.warmup_by_epoch = warmup_by_epoch
if self.warmup_by_epoch:
self.warmup_epochs = self.warmup_iters
self.warmup_iters = None
else:
self.warmup_epochs = None
self.base_lr = [] # initial lr for all param groups
self.regular_lr = [] # expected lr if no warming up is performed
def _set_lr(self, runner, lr_groups):
if isinstance(runner.optimizer, dict):
for k, optim in runner.optimizer.items():
for param_group, lr in zip(optim.param_groups, lr_groups[k]):
param_group['lr'] = lr
else:
for param_group, lr in zip(runner.optimizer.param_groups,
lr_groups):
param_group['lr'] = lr
def get_lr(self, runner, base_lr):
raise NotImplementedError
def get_regular_lr(self, runner):
if isinstance(runner.optimizer, dict):
lr_groups = {}
for k in runner.optimizer.keys():
_lr_group = [
self.get_lr(runner, _base_lr)
for _base_lr in self.base_lr[k]
]
lr_groups.update({k: _lr_group})
return lr_groups
else:
return [self.get_lr(runner, _base_lr) for _base_lr in self.base_lr]
def get_warmup_lr(self, cur_iters):
def _get_warmup_lr(cur_iters, regular_lr):
if self.warmup == 'constant':
warmup_lr = [_lr * self.warmup_ratio for _lr in regular_lr]
elif self.warmup == 'linear':
k = (1 - cur_iters / self.warmup_iters) * (1 -
self.warmup_ratio)
warmup_lr = [_lr * (1 - k) for _lr in regular_lr]
elif self.warmup == 'exp':
k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters)
warmup_lr = [_lr * k for _lr in regular_lr]
return warmup_lr
if isinstance(self.regular_lr, dict):
lr_groups = {}
for key, regular_lr in self.regular_lr.items():
lr_groups[key] = _get_warmup_lr(cur_iters, regular_lr)
return lr_groups
else:
return _get_warmup_lr(cur_iters, self.regular_lr)
def before_run(self, runner):
# NOTE: when resuming from a checkpoint, if 'initial_lr' is not saved,
# it will be set according to the optimizer params
if isinstance(runner.optimizer, dict):
self.base_lr = {}
for k, optim in runner.optimizer.items():
for group in optim.param_groups:
group.setdefault('initial_lr', group['lr'])
_base_lr = [
group['initial_lr'] for group in optim.param_groups
]
self.base_lr.update({k: _base_lr})
else:
for group in runner.optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
self.base_lr = [
group['initial_lr'] for group in runner.optimizer.param_groups
]
def before_train_epoch(self, runner):
if self.warmup_iters is None:
epoch_len = len(runner.data_loader)
self.warmup_iters = self.warmup_epochs * epoch_len
if not self.by_epoch:
return
self.regular_lr = self.get_regular_lr(runner)
self._set_lr(runner, self.regular_lr)
def before_train_iter(self, runner):
cur_iter = runner.iter
if not self.by_epoch:
self.regular_lr = self.get_regular_lr(runner)
if self.warmup is None or cur_iter >= self.warmup_iters:
self._set_lr(runner, self.regular_lr)
else:
warmup_lr = self.get_warmup_lr(cur_iter)
self._set_lr(runner, warmup_lr)
elif self.by_epoch:
if self.warmup is None or cur_iter > self.warmup_iters:
return
elif cur_iter == self.warmup_iters:
self._set_lr(runner, self.regular_lr)
else:
warmup_lr = self.get_warmup_lr(cur_iter)
self._set_lr(runner, warmup_lr)
@HOOKS.register_module()
class FixedLrUpdaterHook(LrUpdaterHook):
def __init__(self, **kwargs):
super(FixedLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
return base_lr
@HOOKS.register_module()
class StepLrUpdaterHook(LrUpdaterHook):
"""Step LR scheduler with min_lr clipping.
Args:
step (int | list[int]): Step to decay the LR. If an int value is given,
regard it as the decay interval. If a list is given, decay LR at
these steps.
gamma (float, optional): Decay LR ratio. Default: 0.1.
min_lr (float, optional): Minimum LR value to keep. If LR after decay
is lower than `min_lr`, it will be clipped to this value. If None
is given, we don't perform lr clipping. Default: None.
"""
def __init__(self, step, gamma=0.1, min_lr=None, **kwargs):
if isinstance(step, list):
assert mmcv.is_list_of(step, int)
assert all([s > 0 for s in step])
elif isinstance(step, int):
assert step > 0
else:
raise TypeError('"step" must be a list or integer')
self.step = step
self.gamma = gamma
self.min_lr = min_lr
super(StepLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
progress = runner.epoch if self.by_epoch else runner.iter
# calculate exponential term
if isinstance(self.step, int):
exp = progress // self.step
else:
exp = len(self.step)
for i, s in enumerate(self.step):
if progress < s:
exp = i
break
lr = base_lr * (self.gamma**exp)
if self.min_lr is not None:
# clip to a minimum value
lr = max(lr, self.min_lr)
return lr
@HOOKS.register_module()
class ExpLrUpdaterHook(LrUpdaterHook):
def __init__(self, gamma, **kwargs):
self.gamma = gamma
super(ExpLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
progress = runner.epoch if self.by_epoch else runner.iter
return base_lr * self.gamma**progress
@HOOKS.register_module()
class PolyLrUpdaterHook(LrUpdaterHook):
def __init__(self, power=1., min_lr=0., **kwargs):
self.power = power
self.min_lr = min_lr
super(PolyLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
if self.by_epoch:
progress = runner.epoch
max_progress = runner.max_epochs
else:
progress = runner.iter
max_progress = runner.max_iters
coeff = (1 - progress / max_progress)**self.power
return (base_lr - self.min_lr) * coeff + self.min_lr
@HOOKS.register_module()
class InvLrUpdaterHook(LrUpdaterHook):
def __init__(self, gamma, power=1., **kwargs):
self.gamma = gamma
self.power = power
super(InvLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
progress = runner.epoch if self.by_epoch else runner.iter
return base_lr * (1 + self.gamma * progress)**(-self.power)
@HOOKS.register_module()
class CosineAnnealingLrUpdaterHook(LrUpdaterHook):
def __init__(self, min_lr=None, min_lr_ratio=None, **kwargs):
assert (min_lr is None) ^ (min_lr_ratio is None)
self.min_lr = min_lr
self.min_lr_ratio = min_lr_ratio
super(CosineAnnealingLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
if self.by_epoch:
progress = runner.epoch
max_progress = runner.max_epochs
else:
progress = runner.iter
max_progress = runner.max_iters
if self.min_lr_ratio is not None:
target_lr = base_lr * self.min_lr_ratio
else:
target_lr = self.min_lr
return annealing_cos(base_lr, target_lr, progress / max_progress)
@HOOKS.register_module()
class FlatCosineAnnealingLrUpdaterHook(LrUpdaterHook):
"""Flat + Cosine lr schedule.
Modified from https://github.com/fastai/fastai/blob/master/fastai/callback/schedule.py#L128 # noqa: E501
Args:
start_percent (float): When to start annealing the learning rate
after the percentage of the total training steps.
The value should be in range [0, 1).
Default: 0.75
min_lr (float, optional): The minimum lr. Default: None.
min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
Either `min_lr` or `min_lr_ratio` should be specified.
Default: None.
"""
def __init__(self,
start_percent=0.75,
min_lr=None,
min_lr_ratio=None,
**kwargs):
assert (min_lr is None) ^ (min_lr_ratio is None)
if start_percent < 0 or start_percent > 1 or not isinstance(
start_percent, float):
raise ValueError(
'expected float between 0 and 1 start_percent, but '
f'got {start_percent}')
self.start_percent = start_percent
self.min_lr = min_lr
self.min_lr_ratio = min_lr_ratio
super(FlatCosineAnnealingLrUpdaterHook, self).__init__(**kwargs)
def get_lr(self, runner, base_lr):
if self.by_epoch:
start = round(runner.max_epochs * self.start_percent)
progress = runner.epoch - start
max_progress = runner.max_epochs - start
else:
start = round(runner.max_iters * self.start_percent)
progress = runner.iter - start
max_progress = runner.max_iters - start
if self.min_lr_ratio is not None:
target_lr = base_lr * self.min_lr_ratio
else:
target_lr = self.min_lr
if progress < 0:
return base_lr
else:
return annealing_cos(base_lr, target_lr, progress / max_progress)
@HOOKS.register_module()
class CosineRestartLrUpdaterHook(LrUpdaterHook):
"""Cosine annealing with restarts learning rate scheme.
Args:
periods (list[int]): Periods for each cosine anneling cycle.
restart_weights (list[float], optional): Restart weights at each
restart iteration. Default: [1].
min_lr (float, optional): The minimum lr. Default: None.
min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
Either `min_lr` or `min_lr_ratio` should be specified.
Default: None.
"""
def __init__(self,
periods,
restart_weights=[1],
min_lr=None,
min_lr_ratio=None,
**kwargs):
assert (min_lr is None) ^ (min_lr_ratio is None)
self.periods = periods
self.min_lr = min_lr
self.min_lr_ratio = min_lr_ratio
self.restart_weights = restart_weights
assert (len(self.periods) == len(self.restart_weights)
), 'periods and restart_weights should have the same length.'
super(CosineRestartLrUpdaterHook, self).__init__(**kwargs)
self.cumulative_periods = [
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
]
def get_lr(self, runner, base_lr):
if self.by_epoch:
progress = runner.epoch
else:
progress = runner.iter
if self.min_lr_ratio is not None:
target_lr = base_lr * self.min_lr_ratio
else:
target_lr = self.min_lr
idx = get_position_from_periods(progress, self.cumulative_periods)
current_weight = self.restart_weights[idx]
nearest_restart = 0 if idx == 0 else self.cumulative_periods[idx - 1]
current_periods = self.periods[idx]
alpha = min((progress - nearest_restart) / current_periods, 1)
return annealing_cos(base_lr, target_lr, alpha, current_weight)
def get_position_from_periods(iteration, cumulative_periods):
"""Get the position from a period list.
It will return the index of the right-closest number in the period list.
For example, the cumulative_periods = [100, 200, 300, 400],
if iteration == 50, return 0;
if iteration == 210, return 2;
if iteration == 300, return 3.
Args:
iteration (int): Current iteration.
cumulative_periods (list[int]): Cumulative period list.
Returns:
int: The position of the right-closest number in the period list.
"""
for i, period in enumerate(cumulative_periods):
if iteration < period:
return i
raise ValueError(f'Current iteration {iteration} exceeds '
f'cumulative_periods {cumulative_periods}')
@HOOKS.register_module()
class CyclicLrUpdaterHook(LrUpdaterHook):
"""Cyclic LR Scheduler.
Implement the cyclical learning rate policy (CLR) described in
https://arxiv.org/pdf/1506.01186.pdf
Different from the original paper, we use cosine annealing rather than
triangular policy inside a cycle. This improves the performance in the
3D detection area.
Args:
by_epoch (bool): Whether to update LR by epoch.
target_ratio (tuple[float]): Relative ratio of the highest LR and the
lowest LR to the initial LR.
cyclic_times (int): Number of cycles during training
step_ratio_up (float): The ratio of the increasing process of LR in
the total cycle.
anneal_strategy (str): {'cos', 'linear'}
Specifies the annealing strategy: 'cos' for cosine annealing,
'linear' for linear annealing. Default: 'cos'.
"""
def __init__(self,
by_epoch=False,
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,
anneal_strategy='cos',
**kwargs):
if isinstance(target_ratio, float):
target_ratio = (target_ratio, target_ratio / 1e5)
elif isinstance(target_ratio, tuple):
target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \
if len(target_ratio) == 1 else target_ratio
else:
raise ValueError('target_ratio should be either float '
f'or tuple, got {type(target_ratio)}')
assert len(target_ratio) == 2, \
'"target_ratio" must be list or tuple of two floats'
assert 0 <= step_ratio_up < 1.0, \
'"step_ratio_up" must be in range [0,1)'
self.target_ratio = target_ratio
self.cyclic_times = cyclic_times
self.step_ratio_up = step_ratio_up
self.lr_phases = [] # init lr_phases
# validate anneal_strategy
if anneal_strategy not in ['cos', 'linear']:
raise ValueError('anneal_strategy must be one of "cos" or '
f'"linear", instead got {anneal_strategy}')
elif anneal_strategy == 'cos':
self.anneal_func = annealing_cos
elif anneal_strategy == 'linear':
self.anneal_func = annealing_linear
assert not by_epoch, \
'currently only support "by_epoch" = False'
super(CyclicLrUpdaterHook, self).__init__(by_epoch, **kwargs)
def before_run(self, runner):
super(CyclicLrUpdaterHook, self).before_run(runner)
# initiate lr_phases
# total lr_phases are separated as up and down
max_iter_per_phase = runner.max_iters // self.cyclic_times
iter_up_phase = int(self.step_ratio_up * max_iter_per_phase)
self.lr_phases.append(
[0, iter_up_phase, max_iter_per_phase, 1, self.target_ratio[0]])
self.lr_phases.append([
iter_up_phase, max_iter_per_phase, max_iter_per_phase,
self.target_ratio[0], self.target_ratio[1]
])
def get_lr(self, runner, base_lr):
curr_iter = runner.iter
for (start_iter, end_iter, max_iter_per_phase, start_ratio,
end_ratio) in self.lr_phases:
curr_iter %= max_iter_per_phase
if start_iter <= curr_iter < end_iter:
progress = curr_iter - start_iter
return self.anneal_func(base_lr * start_ratio,
base_lr * end_ratio,
progress / (end_iter - start_iter))
@HOOKS.register_module()
class OneCycleLrUpdaterHook(LrUpdaterHook):
"""One Cycle LR Scheduler.
The 1cycle learning rate policy changes the learning rate after every
batch. The one cycle learning rate policy is described in
https://arxiv.org/pdf/1708.07120.pdf
Args:
max_lr (float or list): Upper learning rate boundaries in the cycle
for each parameter group.
total_steps (int, optional): The total number of steps in the cycle.
Note that if a value is not provided here, it will be the max_iter
of runner. Default: None.
pct_start (float): The percentage of the cycle (in number of steps)
spent increasing the learning rate.
Default: 0.3
anneal_strategy (str): {'cos', 'linear'}
Specifies the annealing strategy: 'cos' for cosine annealing,
'linear' for linear annealing.
Default: 'cos'
div_factor (float): Determines the initial learning rate via
initial_lr = max_lr/div_factor
Default: 25
final_div_factor (float): Determines the minimum learning rate via
min_lr = initial_lr/final_div_factor
Default: 1e4
three_phase (bool): If three_phase is True, use a third phase of the
schedule to annihilate the learning rate according to
final_div_factor instead of modifying the second phase (the first
two phases will be symmetrical about the step indicated by
pct_start).
Default: False
"""
def __init__(self,
max_lr,
total_steps=None,
pct_start=0.3,
anneal_strategy='cos',
div_factor=25,
final_div_factor=1e4,
three_phase=False,
**kwargs):
# validate by_epoch, currently only support by_epoch = False
if 'by_epoch' not in kwargs:
kwargs['by_epoch'] = False
else:
assert not kwargs['by_epoch'], \
'currently only support "by_epoch" = False'
if not isinstance(max_lr, (numbers.Number, list, dict)):
raise ValueError('the type of max_lr must be the one of list or '
f'dict, but got {type(max_lr)}')
self._max_lr = max_lr
if total_steps is not None:
if not isinstance(total_steps, int):
raise ValueError('the type of total_steps must be int, but'
f'got {type(total_steps)}')
self.total_steps = total_steps
# validate pct_start
if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
raise ValueError('expected float between 0 and 1 pct_start, but '
f'got {pct_start}')
self.pct_start = pct_start
# validate anneal_strategy
if anneal_strategy not in ['cos', 'linear']:
raise ValueError('anneal_strategy must be one of "cos" or '
f'"linear", instead got {anneal_strategy}')
elif anneal_strategy == 'cos':
self.anneal_func = annealing_cos
elif anneal_strategy == 'linear':
self.anneal_func = annealing_linear
self.div_factor = div_factor
self.final_div_factor = final_div_factor
self.three_phase = three_phase
self.lr_phases = [] # init lr_phases
super(OneCycleLrUpdaterHook, self).__init__(**kwargs)
def before_run(self, runner):
if hasattr(self, 'total_steps'):
total_steps = self.total_steps
else:
total_steps = runner.max_iters
if total_steps < runner.max_iters:
raise ValueError(
'The total steps must be greater than or equal to max '
f'iterations {runner.max_iters} of runner, but total steps '
f'is {total_steps}.')
if isinstance(runner.optimizer, dict):
self.base_lr = {}
for k, optim in runner.optimizer.items():
_max_lr = format_param(k, optim, self._max_lr)
self.base_lr[k] = [lr / self.div_factor for lr in _max_lr]
for group, lr in zip(optim.param_groups, self.base_lr[k]):
group.setdefault('initial_lr', lr)
else:
k = type(runner.optimizer).__name__
_max_lr = format_param(k, runner.optimizer, self._max_lr)
self.base_lr = [lr / self.div_factor for lr in _max_lr]
for group, lr in zip(runner.optimizer.param_groups, self.base_lr):
group.setdefault('initial_lr', lr)
if self.three_phase:
self.lr_phases.append(
[float(self.pct_start * total_steps) - 1, 1, self.div_factor])
self.lr_phases.append([
float(2 * self.pct_start * total_steps) - 2, self.div_factor, 1
])
self.lr_phases.append(
[total_steps - 1, 1, 1 / self.final_div_factor])
else:
self.lr_phases.append(
[float(self.pct_start * total_steps) - 1, 1, self.div_factor])
self.lr_phases.append(
[total_steps - 1, self.div_factor, 1 / self.final_div_factor])
def get_lr(self, runner, base_lr):
curr_iter = runner.iter
start_iter = 0
for i, (end_iter, start_lr, end_lr) in enumerate(self.lr_phases):
if curr_iter <= end_iter:
pct = (curr_iter - start_iter) / (end_iter - start_iter)
lr = self.anneal_func(base_lr * start_lr, base_lr * end_lr,
pct)
break
start_iter = end_iter
return lr
def annealing_cos(start, end, factor, weight=1):
"""Calculate annealing cos learning rate.
Cosine anneal from `weight * start + (1 - weight) * end` to `end` as
percentage goes from 0.0 to 1.0.
Args:
start (float): The starting learning rate of the cosine annealing.
end (float): The ending learing rate of the cosine annealing.
factor (float): The coefficient of `pi` when calculating the current
percentage. Range from 0.0 to 1.0.
weight (float, optional): The combination factor of `start` and `end`
when calculating the actual starting learning rate. Default to 1.
"""
cos_out = cos(pi * factor) + 1
return end + 0.5 * weight * (start - end) * cos_out
def annealing_linear(start, end, factor):
"""Calculate annealing linear learning rate.
Linear anneal from `start` to `end` as percentage goes from 0.0 to 1.0.
Args:
start (float): The starting learning rate of the linear annealing.
end (float): The ending learing rate of the linear annealing.
factor (float): The coefficient of `pi` when calculating the current
percentage. Range from 0.0 to 1.0.
"""
return start + (end - start) * factor
def format_param(name, optim, param):
if isinstance(param, numbers.Number):
return [param] * len(optim.param_groups)
elif isinstance(param, (list, tuple)): # multi param groups
if len(param) != len(optim.param_groups):
raise ValueError(f'expected {len(optim.param_groups)} '
f'values for {name}, got {len(param)}')
return param
else: # multi optimizers
if name not in param:
raise KeyError(f'{name} is not found in {param.keys()}')
return param[name]
|