File size: 26,034 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# Copyright (c) OpenMMLab. All rights reserved.
import numbers
from math import cos, pi

import annotator.uniformer.mmcv as mmcv
from .hook import HOOKS, Hook


class LrUpdaterHook(Hook):
    """LR Scheduler in MMCV.

    Args:
        by_epoch (bool): LR changes epoch by epoch
        warmup (string): Type of warmup used. It can be None(use no warmup),
            'constant', 'linear' or 'exp'
        warmup_iters (int): The number of iterations or epochs that warmup
            lasts
        warmup_ratio (float): LR used at the beginning of warmup equals to
            warmup_ratio * initial_lr
        warmup_by_epoch (bool): When warmup_by_epoch == True, warmup_iters
            means the number of epochs that warmup lasts, otherwise means the
            number of iteration that warmup lasts
    """

    def __init__(self,
                 by_epoch=True,
                 warmup=None,
                 warmup_iters=0,
                 warmup_ratio=0.1,
                 warmup_by_epoch=False):
        # validate the "warmup" argument
        if warmup is not None:
            if warmup not in ['constant', 'linear', 'exp']:
                raise ValueError(
                    f'"{warmup}" is not a supported type for warming up, valid'
                    ' types are "constant" and "linear"')
        if warmup is not None:
            assert warmup_iters > 0, \
                '"warmup_iters" must be a positive integer'
            assert 0 < warmup_ratio <= 1.0, \
                '"warmup_ratio" must be in range (0,1]'

        self.by_epoch = by_epoch
        self.warmup = warmup
        self.warmup_iters = warmup_iters
        self.warmup_ratio = warmup_ratio
        self.warmup_by_epoch = warmup_by_epoch

        if self.warmup_by_epoch:
            self.warmup_epochs = self.warmup_iters
            self.warmup_iters = None
        else:
            self.warmup_epochs = None

        self.base_lr = []  # initial lr for all param groups
        self.regular_lr = []  # expected lr if no warming up is performed

    def _set_lr(self, runner, lr_groups):
        if isinstance(runner.optimizer, dict):
            for k, optim in runner.optimizer.items():
                for param_group, lr in zip(optim.param_groups, lr_groups[k]):
                    param_group['lr'] = lr
        else:
            for param_group, lr in zip(runner.optimizer.param_groups,
                                       lr_groups):
                param_group['lr'] = lr

    def get_lr(self, runner, base_lr):
        raise NotImplementedError

    def get_regular_lr(self, runner):
        if isinstance(runner.optimizer, dict):
            lr_groups = {}
            for k in runner.optimizer.keys():
                _lr_group = [
                    self.get_lr(runner, _base_lr)
                    for _base_lr in self.base_lr[k]
                ]
                lr_groups.update({k: _lr_group})

            return lr_groups
        else:
            return [self.get_lr(runner, _base_lr) for _base_lr in self.base_lr]

    def get_warmup_lr(self, cur_iters):

        def _get_warmup_lr(cur_iters, regular_lr):
            if self.warmup == 'constant':
                warmup_lr = [_lr * self.warmup_ratio for _lr in regular_lr]
            elif self.warmup == 'linear':
                k = (1 - cur_iters / self.warmup_iters) * (1 -
                                                           self.warmup_ratio)
                warmup_lr = [_lr * (1 - k) for _lr in regular_lr]
            elif self.warmup == 'exp':
                k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters)
                warmup_lr = [_lr * k for _lr in regular_lr]
            return warmup_lr

        if isinstance(self.regular_lr, dict):
            lr_groups = {}
            for key, regular_lr in self.regular_lr.items():
                lr_groups[key] = _get_warmup_lr(cur_iters, regular_lr)
            return lr_groups
        else:
            return _get_warmup_lr(cur_iters, self.regular_lr)

    def before_run(self, runner):
        # NOTE: when resuming from a checkpoint, if 'initial_lr' is not saved,
        # it will be set according to the optimizer params
        if isinstance(runner.optimizer, dict):
            self.base_lr = {}
            for k, optim in runner.optimizer.items():
                for group in optim.param_groups:
                    group.setdefault('initial_lr', group['lr'])
                _base_lr = [
                    group['initial_lr'] for group in optim.param_groups
                ]
                self.base_lr.update({k: _base_lr})
        else:
            for group in runner.optimizer.param_groups:
                group.setdefault('initial_lr', group['lr'])
            self.base_lr = [
                group['initial_lr'] for group in runner.optimizer.param_groups
            ]

    def before_train_epoch(self, runner):
        if self.warmup_iters is None:
            epoch_len = len(runner.data_loader)
            self.warmup_iters = self.warmup_epochs * epoch_len

        if not self.by_epoch:
            return

        self.regular_lr = self.get_regular_lr(runner)
        self._set_lr(runner, self.regular_lr)

    def before_train_iter(self, runner):
        cur_iter = runner.iter
        if not self.by_epoch:
            self.regular_lr = self.get_regular_lr(runner)
            if self.warmup is None or cur_iter >= self.warmup_iters:
                self._set_lr(runner, self.regular_lr)
            else:
                warmup_lr = self.get_warmup_lr(cur_iter)
                self._set_lr(runner, warmup_lr)
        elif self.by_epoch:
            if self.warmup is None or cur_iter > self.warmup_iters:
                return
            elif cur_iter == self.warmup_iters:
                self._set_lr(runner, self.regular_lr)
            else:
                warmup_lr = self.get_warmup_lr(cur_iter)
                self._set_lr(runner, warmup_lr)


@HOOKS.register_module()
class FixedLrUpdaterHook(LrUpdaterHook):

    def __init__(self, **kwargs):
        super(FixedLrUpdaterHook, self).__init__(**kwargs)

    def get_lr(self, runner, base_lr):
        return base_lr


@HOOKS.register_module()
class StepLrUpdaterHook(LrUpdaterHook):
    """Step LR scheduler with min_lr clipping.

    Args:
        step (int | list[int]): Step to decay the LR. If an int value is given,
            regard it as the decay interval. If a list is given, decay LR at
            these steps.
        gamma (float, optional): Decay LR ratio. Default: 0.1.
        min_lr (float, optional): Minimum LR value to keep. If LR after decay
            is lower than `min_lr`, it will be clipped to this value. If None
            is given, we don't perform lr clipping. Default: None.
    """

    def __init__(self, step, gamma=0.1, min_lr=None, **kwargs):
        if isinstance(step, list):
            assert mmcv.is_list_of(step, int)
            assert all([s > 0 for s in step])
        elif isinstance(step, int):
            assert step > 0
        else:
            raise TypeError('"step" must be a list or integer')
        self.step = step
        self.gamma = gamma
        self.min_lr = min_lr
        super(StepLrUpdaterHook, self).__init__(**kwargs)

    def get_lr(self, runner, base_lr):
        progress = runner.epoch if self.by_epoch else runner.iter

        # calculate exponential term
        if isinstance(self.step, int):
            exp = progress // self.step
        else:
            exp = len(self.step)
            for i, s in enumerate(self.step):
                if progress < s:
                    exp = i
                    break

        lr = base_lr * (self.gamma**exp)
        if self.min_lr is not None:
            # clip to a minimum value
            lr = max(lr, self.min_lr)
        return lr


@HOOKS.register_module()
class ExpLrUpdaterHook(LrUpdaterHook):

    def __init__(self, gamma, **kwargs):
        self.gamma = gamma
        super(ExpLrUpdaterHook, self).__init__(**kwargs)

    def get_lr(self, runner, base_lr):
        progress = runner.epoch if self.by_epoch else runner.iter
        return base_lr * self.gamma**progress


@HOOKS.register_module()
class PolyLrUpdaterHook(LrUpdaterHook):

    def __init__(self, power=1., min_lr=0., **kwargs):
        self.power = power
        self.min_lr = min_lr
        super(PolyLrUpdaterHook, self).__init__(**kwargs)

    def get_lr(self, runner, base_lr):
        if self.by_epoch:
            progress = runner.epoch
            max_progress = runner.max_epochs
        else:
            progress = runner.iter
            max_progress = runner.max_iters
        coeff = (1 - progress / max_progress)**self.power
        return (base_lr - self.min_lr) * coeff + self.min_lr


@HOOKS.register_module()
class InvLrUpdaterHook(LrUpdaterHook):

    def __init__(self, gamma, power=1., **kwargs):
        self.gamma = gamma
        self.power = power
        super(InvLrUpdaterHook, self).__init__(**kwargs)

    def get_lr(self, runner, base_lr):
        progress = runner.epoch if self.by_epoch else runner.iter
        return base_lr * (1 + self.gamma * progress)**(-self.power)


@HOOKS.register_module()
class CosineAnnealingLrUpdaterHook(LrUpdaterHook):

    def __init__(self, min_lr=None, min_lr_ratio=None, **kwargs):
        assert (min_lr is None) ^ (min_lr_ratio is None)
        self.min_lr = min_lr
        self.min_lr_ratio = min_lr_ratio
        super(CosineAnnealingLrUpdaterHook, self).__init__(**kwargs)

    def get_lr(self, runner, base_lr):
        if self.by_epoch:
            progress = runner.epoch
            max_progress = runner.max_epochs
        else:
            progress = runner.iter
            max_progress = runner.max_iters

        if self.min_lr_ratio is not None:
            target_lr = base_lr * self.min_lr_ratio
        else:
            target_lr = self.min_lr
        return annealing_cos(base_lr, target_lr, progress / max_progress)


@HOOKS.register_module()
class FlatCosineAnnealingLrUpdaterHook(LrUpdaterHook):
    """Flat + Cosine lr schedule.

    Modified from https://github.com/fastai/fastai/blob/master/fastai/callback/schedule.py#L128 # noqa: E501

    Args:
        start_percent (float): When to start annealing the learning rate
            after the percentage of the total training steps.
            The value should be in range [0, 1).
            Default: 0.75
        min_lr (float, optional): The minimum lr. Default: None.
        min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
            Either `min_lr` or `min_lr_ratio` should be specified.
            Default: None.
    """

    def __init__(self,
                 start_percent=0.75,
                 min_lr=None,
                 min_lr_ratio=None,
                 **kwargs):
        assert (min_lr is None) ^ (min_lr_ratio is None)
        if start_percent < 0 or start_percent > 1 or not isinstance(
                start_percent, float):
            raise ValueError(
                'expected float between 0 and 1 start_percent, but '
                f'got {start_percent}')
        self.start_percent = start_percent
        self.min_lr = min_lr
        self.min_lr_ratio = min_lr_ratio
        super(FlatCosineAnnealingLrUpdaterHook, self).__init__(**kwargs)

    def get_lr(self, runner, base_lr):
        if self.by_epoch:
            start = round(runner.max_epochs * self.start_percent)
            progress = runner.epoch - start
            max_progress = runner.max_epochs - start
        else:
            start = round(runner.max_iters * self.start_percent)
            progress = runner.iter - start
            max_progress = runner.max_iters - start

        if self.min_lr_ratio is not None:
            target_lr = base_lr * self.min_lr_ratio
        else:
            target_lr = self.min_lr

        if progress < 0:
            return base_lr
        else:
            return annealing_cos(base_lr, target_lr, progress / max_progress)


@HOOKS.register_module()
class CosineRestartLrUpdaterHook(LrUpdaterHook):
    """Cosine annealing with restarts learning rate scheme.

    Args:
        periods (list[int]): Periods for each cosine anneling cycle.
        restart_weights (list[float], optional): Restart weights at each
            restart iteration. Default: [1].
        min_lr (float, optional): The minimum lr. Default: None.
        min_lr_ratio (float, optional): The ratio of minimum lr to the base lr.
            Either `min_lr` or `min_lr_ratio` should be specified.
            Default: None.
    """

    def __init__(self,
                 periods,
                 restart_weights=[1],
                 min_lr=None,
                 min_lr_ratio=None,
                 **kwargs):
        assert (min_lr is None) ^ (min_lr_ratio is None)
        self.periods = periods
        self.min_lr = min_lr
        self.min_lr_ratio = min_lr_ratio
        self.restart_weights = restart_weights
        assert (len(self.periods) == len(self.restart_weights)
                ), 'periods and restart_weights should have the same length.'
        super(CosineRestartLrUpdaterHook, self).__init__(**kwargs)

        self.cumulative_periods = [
            sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
        ]

    def get_lr(self, runner, base_lr):
        if self.by_epoch:
            progress = runner.epoch
        else:
            progress = runner.iter

        if self.min_lr_ratio is not None:
            target_lr = base_lr * self.min_lr_ratio
        else:
            target_lr = self.min_lr

        idx = get_position_from_periods(progress, self.cumulative_periods)
        current_weight = self.restart_weights[idx]
        nearest_restart = 0 if idx == 0 else self.cumulative_periods[idx - 1]
        current_periods = self.periods[idx]

        alpha = min((progress - nearest_restart) / current_periods, 1)
        return annealing_cos(base_lr, target_lr, alpha, current_weight)


def get_position_from_periods(iteration, cumulative_periods):
    """Get the position from a period list.

    It will return the index of the right-closest number in the period list.
    For example, the cumulative_periods = [100, 200, 300, 400],
    if iteration == 50, return 0;
    if iteration == 210, return 2;
    if iteration == 300, return 3.

    Args:
        iteration (int): Current iteration.
        cumulative_periods (list[int]): Cumulative period list.

    Returns:
        int: The position of the right-closest number in the period list.
    """
    for i, period in enumerate(cumulative_periods):
        if iteration < period:
            return i
    raise ValueError(f'Current iteration {iteration} exceeds '
                     f'cumulative_periods {cumulative_periods}')


@HOOKS.register_module()
class CyclicLrUpdaterHook(LrUpdaterHook):
    """Cyclic LR Scheduler.

    Implement the cyclical learning rate policy (CLR) described in
    https://arxiv.org/pdf/1506.01186.pdf

    Different from the original paper, we use cosine annealing rather than
    triangular policy inside a cycle. This improves the performance in the
    3D detection area.

    Args:
        by_epoch (bool): Whether to update LR by epoch.
        target_ratio (tuple[float]): Relative ratio of the highest LR and the
            lowest LR to the initial LR.
        cyclic_times (int): Number of cycles during training
        step_ratio_up (float): The ratio of the increasing process of LR in
            the total cycle.
        anneal_strategy (str): {'cos', 'linear'}
            Specifies the annealing strategy: 'cos' for cosine annealing,
            'linear' for linear annealing. Default: 'cos'.
    """

    def __init__(self,
                 by_epoch=False,
                 target_ratio=(10, 1e-4),
                 cyclic_times=1,
                 step_ratio_up=0.4,
                 anneal_strategy='cos',
                 **kwargs):
        if isinstance(target_ratio, float):
            target_ratio = (target_ratio, target_ratio / 1e5)
        elif isinstance(target_ratio, tuple):
            target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \
                if len(target_ratio) == 1 else target_ratio
        else:
            raise ValueError('target_ratio should be either float '
                             f'or tuple, got {type(target_ratio)}')

        assert len(target_ratio) == 2, \
            '"target_ratio" must be list or tuple of two floats'
        assert 0 <= step_ratio_up < 1.0, \
            '"step_ratio_up" must be in range [0,1)'

        self.target_ratio = target_ratio
        self.cyclic_times = cyclic_times
        self.step_ratio_up = step_ratio_up
        self.lr_phases = []  # init lr_phases
        # validate anneal_strategy
        if anneal_strategy not in ['cos', 'linear']:
            raise ValueError('anneal_strategy must be one of "cos" or '
                             f'"linear", instead got {anneal_strategy}')
        elif anneal_strategy == 'cos':
            self.anneal_func = annealing_cos
        elif anneal_strategy == 'linear':
            self.anneal_func = annealing_linear

        assert not by_epoch, \
            'currently only support "by_epoch" = False'
        super(CyclicLrUpdaterHook, self).__init__(by_epoch, **kwargs)

    def before_run(self, runner):
        super(CyclicLrUpdaterHook, self).before_run(runner)
        # initiate lr_phases
        # total lr_phases are separated as up and down
        max_iter_per_phase = runner.max_iters // self.cyclic_times
        iter_up_phase = int(self.step_ratio_up * max_iter_per_phase)
        self.lr_phases.append(
            [0, iter_up_phase, max_iter_per_phase, 1, self.target_ratio[0]])
        self.lr_phases.append([
            iter_up_phase, max_iter_per_phase, max_iter_per_phase,
            self.target_ratio[0], self.target_ratio[1]
        ])

    def get_lr(self, runner, base_lr):
        curr_iter = runner.iter
        for (start_iter, end_iter, max_iter_per_phase, start_ratio,
             end_ratio) in self.lr_phases:
            curr_iter %= max_iter_per_phase
            if start_iter <= curr_iter < end_iter:
                progress = curr_iter - start_iter
                return self.anneal_func(base_lr * start_ratio,
                                        base_lr * end_ratio,
                                        progress / (end_iter - start_iter))


@HOOKS.register_module()
class OneCycleLrUpdaterHook(LrUpdaterHook):
    """One Cycle LR Scheduler.

    The 1cycle learning rate policy changes the learning rate after every
    batch. The one cycle learning rate policy is described in
    https://arxiv.org/pdf/1708.07120.pdf

    Args:
        max_lr (float or list): Upper learning rate boundaries in the cycle
            for each parameter group.
        total_steps (int, optional): The total number of steps in the cycle.
            Note that if a value is not provided here, it will be the max_iter
            of runner. Default: None.
        pct_start (float): The percentage of the cycle (in number of steps)
            spent increasing the learning rate.
            Default: 0.3
        anneal_strategy (str): {'cos', 'linear'}
            Specifies the annealing strategy: 'cos' for cosine annealing,
            'linear' for linear annealing.
            Default: 'cos'
        div_factor (float): Determines the initial learning rate via
            initial_lr = max_lr/div_factor
            Default: 25
        final_div_factor (float): Determines the minimum learning rate via
            min_lr = initial_lr/final_div_factor
            Default: 1e4
        three_phase (bool): If three_phase is True, use a third phase of the
            schedule to annihilate the learning rate according to
            final_div_factor instead of modifying the second phase (the first
            two phases will be symmetrical about the step indicated by
            pct_start).
            Default: False
    """

    def __init__(self,
                 max_lr,
                 total_steps=None,
                 pct_start=0.3,
                 anneal_strategy='cos',
                 div_factor=25,
                 final_div_factor=1e4,
                 three_phase=False,
                 **kwargs):
        # validate by_epoch, currently only support by_epoch = False
        if 'by_epoch' not in kwargs:
            kwargs['by_epoch'] = False
        else:
            assert not kwargs['by_epoch'], \
                'currently only support "by_epoch" = False'
        if not isinstance(max_lr, (numbers.Number, list, dict)):
            raise ValueError('the type of max_lr must be the one of list or '
                             f'dict, but got {type(max_lr)}')
        self._max_lr = max_lr
        if total_steps is not None:
            if not isinstance(total_steps, int):
                raise ValueError('the type of total_steps must be int, but'
                                 f'got {type(total_steps)}')
            self.total_steps = total_steps
        # validate pct_start
        if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
            raise ValueError('expected float between 0 and 1 pct_start, but '
                             f'got {pct_start}')
        self.pct_start = pct_start
        # validate anneal_strategy
        if anneal_strategy not in ['cos', 'linear']:
            raise ValueError('anneal_strategy must be one of "cos" or '
                             f'"linear", instead got {anneal_strategy}')
        elif anneal_strategy == 'cos':
            self.anneal_func = annealing_cos
        elif anneal_strategy == 'linear':
            self.anneal_func = annealing_linear
        self.div_factor = div_factor
        self.final_div_factor = final_div_factor
        self.three_phase = three_phase
        self.lr_phases = []  # init lr_phases
        super(OneCycleLrUpdaterHook, self).__init__(**kwargs)

    def before_run(self, runner):
        if hasattr(self, 'total_steps'):
            total_steps = self.total_steps
        else:
            total_steps = runner.max_iters
        if total_steps < runner.max_iters:
            raise ValueError(
                'The total steps must be greater than or equal to max '
                f'iterations {runner.max_iters} of runner, but total steps '
                f'is {total_steps}.')

        if isinstance(runner.optimizer, dict):
            self.base_lr = {}
            for k, optim in runner.optimizer.items():
                _max_lr = format_param(k, optim, self._max_lr)
                self.base_lr[k] = [lr / self.div_factor for lr in _max_lr]
                for group, lr in zip(optim.param_groups, self.base_lr[k]):
                    group.setdefault('initial_lr', lr)
        else:
            k = type(runner.optimizer).__name__
            _max_lr = format_param(k, runner.optimizer, self._max_lr)
            self.base_lr = [lr / self.div_factor for lr in _max_lr]
            for group, lr in zip(runner.optimizer.param_groups, self.base_lr):
                group.setdefault('initial_lr', lr)

        if self.three_phase:
            self.lr_phases.append(
                [float(self.pct_start * total_steps) - 1, 1, self.div_factor])
            self.lr_phases.append([
                float(2 * self.pct_start * total_steps) - 2, self.div_factor, 1
            ])
            self.lr_phases.append(
                [total_steps - 1, 1, 1 / self.final_div_factor])
        else:
            self.lr_phases.append(
                [float(self.pct_start * total_steps) - 1, 1, self.div_factor])
            self.lr_phases.append(
                [total_steps - 1, self.div_factor, 1 / self.final_div_factor])

    def get_lr(self, runner, base_lr):
        curr_iter = runner.iter
        start_iter = 0
        for i, (end_iter, start_lr, end_lr) in enumerate(self.lr_phases):
            if curr_iter <= end_iter:
                pct = (curr_iter - start_iter) / (end_iter - start_iter)
                lr = self.anneal_func(base_lr * start_lr, base_lr * end_lr,
                                      pct)
                break
            start_iter = end_iter
        return lr


def annealing_cos(start, end, factor, weight=1):
    """Calculate annealing cos learning rate.

    Cosine anneal from `weight * start + (1 - weight) * end` to `end` as
    percentage goes from 0.0 to 1.0.

    Args:
        start (float): The starting learning rate of the cosine annealing.
        end (float): The ending learing rate of the cosine annealing.
        factor (float): The coefficient of `pi` when calculating the current
            percentage. Range from 0.0 to 1.0.
        weight (float, optional): The combination factor of `start` and `end`
            when calculating the actual starting learning rate. Default to 1.
    """
    cos_out = cos(pi * factor) + 1
    return end + 0.5 * weight * (start - end) * cos_out


def annealing_linear(start, end, factor):
    """Calculate annealing linear learning rate.

    Linear anneal from `start` to `end` as percentage goes from 0.0 to 1.0.

    Args:
        start (float): The starting learning rate of the linear annealing.
        end (float): The ending learing rate of the linear annealing.
        factor (float): The coefficient of `pi` when calculating the current
            percentage. Range from 0.0 to 1.0.
    """
    return start + (end - start) * factor


def format_param(name, optim, param):
    if isinstance(param, numbers.Number):
        return [param] * len(optim.param_groups)
    elif isinstance(param, (list, tuple)):  # multi param groups
        if len(param) != len(optim.param_groups):
            raise ValueError(f'expected {len(optim.param_groups)} '
                             f'values for {name}, got {len(param)}')
        return param
    else:  # multi optimizers
        if name not in param:
            raise KeyError(f'{name} is not found in {param.keys()}')
        return param[name]