Spaces:
Runtime error
Runtime error
File size: 26,006 Bytes
b334e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
import warnings
import numpy as np
import torch
import torch.nn as nn
from torch import Tensor
from annotator.uniformer.mmcv.utils import Registry, build_from_cfg, get_logger, print_log
INITIALIZERS = Registry('initializer')
def update_init_info(module, init_info):
"""Update the `_params_init_info` in the module if the value of parameters
are changed.
Args:
module (obj:`nn.Module`): The module of PyTorch with a user-defined
attribute `_params_init_info` which records the initialization
information.
init_info (str): The string that describes the initialization.
"""
assert hasattr(
module,
'_params_init_info'), f'Can not find `_params_init_info` in {module}'
for name, param in module.named_parameters():
assert param in module._params_init_info, (
f'Find a new :obj:`Parameter` '
f'named `{name}` during executing the '
f'`init_weights` of '
f'`{module.__class__.__name__}`. '
f'Please do not add or '
f'replace parameters during executing '
f'the `init_weights`. ')
# The parameter has been changed during executing the
# `init_weights` of module
mean_value = param.data.mean()
if module._params_init_info[param]['tmp_mean_value'] != mean_value:
module._params_init_info[param]['init_info'] = init_info
module._params_init_info[param]['tmp_mean_value'] = mean_value
def constant_init(module, val, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
nn.init.constant_(module.weight, val)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def xavier_init(module, gain=1, bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if hasattr(module, 'weight') and module.weight is not None:
if distribution == 'uniform':
nn.init.xavier_uniform_(module.weight, gain=gain)
else:
nn.init.xavier_normal_(module.weight, gain=gain)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def normal_init(module, mean=0, std=1, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
nn.init.normal_(module.weight, mean, std)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def trunc_normal_init(module: nn.Module,
mean: float = 0,
std: float = 1,
a: float = -2,
b: float = 2,
bias: float = 0) -> None:
if hasattr(module, 'weight') and module.weight is not None:
trunc_normal_(module.weight, mean, std, a, b) # type: ignore
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias) # type: ignore
def uniform_init(module, a=0, b=1, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
nn.init.uniform_(module.weight, a, b)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def kaiming_init(module,
a=0,
mode='fan_out',
nonlinearity='relu',
bias=0,
distribution='normal'):
assert distribution in ['uniform', 'normal']
if hasattr(module, 'weight') and module.weight is not None:
if distribution == 'uniform':
nn.init.kaiming_uniform_(
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
else:
nn.init.kaiming_normal_(
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def caffe2_xavier_init(module, bias=0):
# `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch
# Acknowledgment to FAIR's internal code
kaiming_init(
module,
a=1,
mode='fan_in',
nonlinearity='leaky_relu',
bias=bias,
distribution='uniform')
def bias_init_with_prob(prior_prob):
"""initialize conv/fc bias value according to a given probability value."""
bias_init = float(-np.log((1 - prior_prob) / prior_prob))
return bias_init
def _get_bases_name(m):
return [b.__name__ for b in m.__class__.__bases__]
class BaseInit(object):
def __init__(self, *, bias=0, bias_prob=None, layer=None):
self.wholemodule = False
if not isinstance(bias, (int, float)):
raise TypeError(f'bias must be a number, but got a {type(bias)}')
if bias_prob is not None:
if not isinstance(bias_prob, float):
raise TypeError(f'bias_prob type must be float, \
but got {type(bias_prob)}')
if layer is not None:
if not isinstance(layer, (str, list)):
raise TypeError(f'layer must be a str or a list of str, \
but got a {type(layer)}')
else:
layer = []
if bias_prob is not None:
self.bias = bias_init_with_prob(bias_prob)
else:
self.bias = bias
self.layer = [layer] if isinstance(layer, str) else layer
def _get_init_info(self):
info = f'{self.__class__.__name__}, bias={self.bias}'
return info
@INITIALIZERS.register_module(name='Constant')
class ConstantInit(BaseInit):
"""Initialize module parameters with constant values.
Args:
val (int | float): the value to fill the weights in the module with
bias (int | float): the value to fill the bias. Defaults to 0.
bias_prob (float, optional): the probability for bias initialization.
Defaults to None.
layer (str | list[str], optional): the layer will be initialized.
Defaults to None.
"""
def __init__(self, val, **kwargs):
super().__init__(**kwargs)
self.val = val
def __call__(self, module):
def init(m):
if self.wholemodule:
constant_init(m, self.val, self.bias)
else:
layername = m.__class__.__name__
basesname = _get_bases_name(m)
if len(set(self.layer) & set([layername] + basesname)):
constant_init(m, self.val, self.bias)
module.apply(init)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self):
info = f'{self.__class__.__name__}: val={self.val}, bias={self.bias}'
return info
@INITIALIZERS.register_module(name='Xavier')
class XavierInit(BaseInit):
r"""Initialize module parameters with values according to the method
described in `Understanding the difficulty of training deep feedforward
neural networks - Glorot, X. & Bengio, Y. (2010).
<http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
Args:
gain (int | float): an optional scaling factor. Defaults to 1.
bias (int | float): the value to fill the bias. Defaults to 0.
bias_prob (float, optional): the probability for bias initialization.
Defaults to None.
distribution (str): distribution either be ``'normal'``
or ``'uniform'``. Defaults to ``'normal'``.
layer (str | list[str], optional): the layer will be initialized.
Defaults to None.
"""
def __init__(self, gain=1, distribution='normal', **kwargs):
super().__init__(**kwargs)
self.gain = gain
self.distribution = distribution
def __call__(self, module):
def init(m):
if self.wholemodule:
xavier_init(m, self.gain, self.bias, self.distribution)
else:
layername = m.__class__.__name__
basesname = _get_bases_name(m)
if len(set(self.layer) & set([layername] + basesname)):
xavier_init(m, self.gain, self.bias, self.distribution)
module.apply(init)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self):
info = f'{self.__class__.__name__}: gain={self.gain}, ' \
f'distribution={self.distribution}, bias={self.bias}'
return info
@INITIALIZERS.register_module(name='Normal')
class NormalInit(BaseInit):
r"""Initialize module parameters with the values drawn from the normal
distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`.
Args:
mean (int | float):the mean of the normal distribution. Defaults to 0.
std (int | float): the standard deviation of the normal distribution.
Defaults to 1.
bias (int | float): the value to fill the bias. Defaults to 0.
bias_prob (float, optional): the probability for bias initialization.
Defaults to None.
layer (str | list[str], optional): the layer will be initialized.
Defaults to None.
"""
def __init__(self, mean=0, std=1, **kwargs):
super().__init__(**kwargs)
self.mean = mean
self.std = std
def __call__(self, module):
def init(m):
if self.wholemodule:
normal_init(m, self.mean, self.std, self.bias)
else:
layername = m.__class__.__name__
basesname = _get_bases_name(m)
if len(set(self.layer) & set([layername] + basesname)):
normal_init(m, self.mean, self.std, self.bias)
module.apply(init)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self):
info = f'{self.__class__.__name__}: mean={self.mean},' \
f' std={self.std}, bias={self.bias}'
return info
@INITIALIZERS.register_module(name='TruncNormal')
class TruncNormalInit(BaseInit):
r"""Initialize module parameters with the values drawn from the normal
distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values
outside :math:`[a, b]`.
Args:
mean (float): the mean of the normal distribution. Defaults to 0.
std (float): the standard deviation of the normal distribution.
Defaults to 1.
a (float): The minimum cutoff value.
b ( float): The maximum cutoff value.
bias (float): the value to fill the bias. Defaults to 0.
bias_prob (float, optional): the probability for bias initialization.
Defaults to None.
layer (str | list[str], optional): the layer will be initialized.
Defaults to None.
"""
def __init__(self,
mean: float = 0,
std: float = 1,
a: float = -2,
b: float = 2,
**kwargs) -> None:
super().__init__(**kwargs)
self.mean = mean
self.std = std
self.a = a
self.b = b
def __call__(self, module: nn.Module) -> None:
def init(m):
if self.wholemodule:
trunc_normal_init(m, self.mean, self.std, self.a, self.b,
self.bias)
else:
layername = m.__class__.__name__
basesname = _get_bases_name(m)
if len(set(self.layer) & set([layername] + basesname)):
trunc_normal_init(m, self.mean, self.std, self.a, self.b,
self.bias)
module.apply(init)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self):
info = f'{self.__class__.__name__}: a={self.a}, b={self.b},' \
f' mean={self.mean}, std={self.std}, bias={self.bias}'
return info
@INITIALIZERS.register_module(name='Uniform')
class UniformInit(BaseInit):
r"""Initialize module parameters with values drawn from the uniform
distribution :math:`\mathcal{U}(a, b)`.
Args:
a (int | float): the lower bound of the uniform distribution.
Defaults to 0.
b (int | float): the upper bound of the uniform distribution.
Defaults to 1.
bias (int | float): the value to fill the bias. Defaults to 0.
bias_prob (float, optional): the probability for bias initialization.
Defaults to None.
layer (str | list[str], optional): the layer will be initialized.
Defaults to None.
"""
def __init__(self, a=0, b=1, **kwargs):
super().__init__(**kwargs)
self.a = a
self.b = b
def __call__(self, module):
def init(m):
if self.wholemodule:
uniform_init(m, self.a, self.b, self.bias)
else:
layername = m.__class__.__name__
basesname = _get_bases_name(m)
if len(set(self.layer) & set([layername] + basesname)):
uniform_init(m, self.a, self.b, self.bias)
module.apply(init)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self):
info = f'{self.__class__.__name__}: a={self.a},' \
f' b={self.b}, bias={self.bias}'
return info
@INITIALIZERS.register_module(name='Kaiming')
class KaimingInit(BaseInit):
r"""Initialize module parameters with the values according to the method
described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification - He, K. et al. (2015).
<https://www.cv-foundation.org/openaccess/content_iccv_2015/
papers/He_Delving_Deep_into_ICCV_2015_paper.pdf>`_
Args:
a (int | float): the negative slope of the rectifier used after this
layer (only used with ``'leaky_relu'``). Defaults to 0.
mode (str): either ``'fan_in'`` or ``'fan_out'``. Choosing
``'fan_in'`` preserves the magnitude of the variance of the weights
in the forward pass. Choosing ``'fan_out'`` preserves the
magnitudes in the backwards pass. Defaults to ``'fan_out'``.
nonlinearity (str): the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` .
Defaults to 'relu'.
bias (int | float): the value to fill the bias. Defaults to 0.
bias_prob (float, optional): the probability for bias initialization.
Defaults to None.
distribution (str): distribution either be ``'normal'`` or
``'uniform'``. Defaults to ``'normal'``.
layer (str | list[str], optional): the layer will be initialized.
Defaults to None.
"""
def __init__(self,
a=0,
mode='fan_out',
nonlinearity='relu',
distribution='normal',
**kwargs):
super().__init__(**kwargs)
self.a = a
self.mode = mode
self.nonlinearity = nonlinearity
self.distribution = distribution
def __call__(self, module):
def init(m):
if self.wholemodule:
kaiming_init(m, self.a, self.mode, self.nonlinearity,
self.bias, self.distribution)
else:
layername = m.__class__.__name__
basesname = _get_bases_name(m)
if len(set(self.layer) & set([layername] + basesname)):
kaiming_init(m, self.a, self.mode, self.nonlinearity,
self.bias, self.distribution)
module.apply(init)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self):
info = f'{self.__class__.__name__}: a={self.a}, mode={self.mode}, ' \
f'nonlinearity={self.nonlinearity}, ' \
f'distribution ={self.distribution}, bias={self.bias}'
return info
@INITIALIZERS.register_module(name='Caffe2Xavier')
class Caffe2XavierInit(KaimingInit):
# `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch
# Acknowledgment to FAIR's internal code
def __init__(self, **kwargs):
super().__init__(
a=1,
mode='fan_in',
nonlinearity='leaky_relu',
distribution='uniform',
**kwargs)
def __call__(self, module):
super().__call__(module)
@INITIALIZERS.register_module(name='Pretrained')
class PretrainedInit(object):
"""Initialize module by loading a pretrained model.
Args:
checkpoint (str): the checkpoint file of the pretrained model should
be load.
prefix (str, optional): the prefix of a sub-module in the pretrained
model. it is for loading a part of the pretrained model to
initialize. For example, if we would like to only load the
backbone of a detector model, we can set ``prefix='backbone.'``.
Defaults to None.
map_location (str): map tensors into proper locations.
"""
def __init__(self, checkpoint, prefix=None, map_location=None):
self.checkpoint = checkpoint
self.prefix = prefix
self.map_location = map_location
def __call__(self, module):
from annotator.uniformer.mmcv.runner import (_load_checkpoint_with_prefix, load_checkpoint,
load_state_dict)
logger = get_logger('mmcv')
if self.prefix is None:
print_log(f'load model from: {self.checkpoint}', logger=logger)
load_checkpoint(
module,
self.checkpoint,
map_location=self.map_location,
strict=False,
logger=logger)
else:
print_log(
f'load {self.prefix} in model from: {self.checkpoint}',
logger=logger)
state_dict = _load_checkpoint_with_prefix(
self.prefix, self.checkpoint, map_location=self.map_location)
load_state_dict(module, state_dict, strict=False, logger=logger)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self):
info = f'{self.__class__.__name__}: load from {self.checkpoint}'
return info
def _initialize(module, cfg, wholemodule=False):
func = build_from_cfg(cfg, INITIALIZERS)
# wholemodule flag is for override mode, there is no layer key in override
# and initializer will give init values for the whole module with the name
# in override.
func.wholemodule = wholemodule
func(module)
def _initialize_override(module, override, cfg):
if not isinstance(override, (dict, list)):
raise TypeError(f'override must be a dict or a list of dict, \
but got {type(override)}')
override = [override] if isinstance(override, dict) else override
for override_ in override:
cp_override = copy.deepcopy(override_)
name = cp_override.pop('name', None)
if name is None:
raise ValueError('`override` must contain the key "name",'
f'but got {cp_override}')
# if override only has name key, it means use args in init_cfg
if not cp_override:
cp_override.update(cfg)
# if override has name key and other args except type key, it will
# raise error
elif 'type' not in cp_override.keys():
raise ValueError(
f'`override` need "type" key, but got {cp_override}')
if hasattr(module, name):
_initialize(getattr(module, name), cp_override, wholemodule=True)
else:
raise RuntimeError(f'module did not have attribute {name}, '
f'but init_cfg is {cp_override}.')
def initialize(module, init_cfg):
"""Initialize a module.
Args:
module (``torch.nn.Module``): the module will be initialized.
init_cfg (dict | list[dict]): initialization configuration dict to
define initializer. OpenMMLab has implemented 6 initializers
including ``Constant``, ``Xavier``, ``Normal``, ``Uniform``,
``Kaiming``, and ``Pretrained``.
Example:
>>> module = nn.Linear(2, 3, bias=True)
>>> init_cfg = dict(type='Constant', layer='Linear', val =1 , bias =2)
>>> initialize(module, init_cfg)
>>> module = nn.Sequential(nn.Conv1d(3, 1, 3), nn.Linear(1,2))
>>> # define key ``'layer'`` for initializing layer with different
>>> # configuration
>>> init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
dict(type='Constant', layer='Linear', val=2)]
>>> initialize(module, init_cfg)
>>> # define key``'override'`` to initialize some specific part in
>>> # module
>>> class FooNet(nn.Module):
>>> def __init__(self):
>>> super().__init__()
>>> self.feat = nn.Conv2d(3, 16, 3)
>>> self.reg = nn.Conv2d(16, 10, 3)
>>> self.cls = nn.Conv2d(16, 5, 3)
>>> model = FooNet()
>>> init_cfg = dict(type='Constant', val=1, bias=2, layer='Conv2d',
>>> override=dict(type='Constant', name='reg', val=3, bias=4))
>>> initialize(model, init_cfg)
>>> model = ResNet(depth=50)
>>> # Initialize weights with the pretrained model.
>>> init_cfg = dict(type='Pretrained',
checkpoint='torchvision://resnet50')
>>> initialize(model, init_cfg)
>>> # Initialize weights of a sub-module with the specific part of
>>> # a pretrained model by using "prefix".
>>> url = 'http://download.openmmlab.com/mmdetection/v2.0/retinanet/'\
>>> 'retinanet_r50_fpn_1x_coco/'\
>>> 'retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth'
>>> init_cfg = dict(type='Pretrained',
checkpoint=url, prefix='backbone.')
"""
if not isinstance(init_cfg, (dict, list)):
raise TypeError(f'init_cfg must be a dict or a list of dict, \
but got {type(init_cfg)}')
if isinstance(init_cfg, dict):
init_cfg = [init_cfg]
for cfg in init_cfg:
# should deeply copy the original config because cfg may be used by
# other modules, e.g., one init_cfg shared by multiple bottleneck
# blocks, the expected cfg will be changed after pop and will change
# the initialization behavior of other modules
cp_cfg = copy.deepcopy(cfg)
override = cp_cfg.pop('override', None)
_initialize(module, cp_cfg)
if override is not None:
cp_cfg.pop('layer', None)
_initialize_override(module, override, cp_cfg)
else:
# All attributes in module have same initialization.
pass
def _no_grad_trunc_normal_(tensor: Tensor, mean: float, std: float, a: float,
b: float) -> Tensor:
# Method based on
# https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
# Modified from
# https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
'The distribution of values may be incorrect.',
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
lower = norm_cdf((a - mean) / std)
upper = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [lower, upper], then translate
# to [2lower-1, 2upper-1].
tensor.uniform_(2 * lower - 1, 2 * upper - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor: Tensor,
mean: float = 0.,
std: float = 1.,
a: float = -2.,
b: float = 2.) -> Tensor:
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Modified from
https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
Args:
tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`.
mean (float): the mean of the normal distribution.
std (float): the standard deviation of the normal distribution.
a (float): the minimum cutoff value.
b (float): the maximum cutoff value.
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|