File size: 6,539 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch.nn as nn
from mmcv.cnn import ConvModule, caffe2_xavier_init
from mmcv.ops.merge_cells import GlobalPoolingCell, SumCell

from ..builder import NECKS


@NECKS.register_module()
class NASFPN(nn.Module):
    """NAS-FPN.

    Implementation of `NAS-FPN: Learning Scalable Feature Pyramid Architecture
    for Object Detection <https://arxiv.org/abs/1904.07392>`_

    Args:
        in_channels (List[int]): Number of input channels per scale.
        out_channels (int): Number of output channels (used at each scale)
        num_outs (int): Number of output scales.
        stack_times (int): The number of times the pyramid architecture will
            be stacked.
        start_level (int): Index of the start input backbone level used to
            build the feature pyramid. Default: 0.
        end_level (int): Index of the end input backbone level (exclusive) to
            build the feature pyramid. Default: -1, which means the last level.
        add_extra_convs (bool): It decides whether to add conv
            layers on top of the original feature maps. Default to False.
            If True, its actual mode is specified by `extra_convs_on_inputs`.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 num_outs,
                 stack_times,
                 start_level=0,
                 end_level=-1,
                 add_extra_convs=False,
                 norm_cfg=None):
        super(NASFPN, self).__init__()
        assert isinstance(in_channels, list)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_ins = len(in_channels)  # num of input feature levels
        self.num_outs = num_outs  # num of output feature levels
        self.stack_times = stack_times
        self.norm_cfg = norm_cfg

        if end_level == -1:
            self.backbone_end_level = self.num_ins
            assert num_outs >= self.num_ins - start_level
        else:
            # if end_level < inputs, no extra level is allowed
            self.backbone_end_level = end_level
            assert end_level <= len(in_channels)
            assert num_outs == end_level - start_level
        self.start_level = start_level
        self.end_level = end_level
        self.add_extra_convs = add_extra_convs

        # add lateral connections
        self.lateral_convs = nn.ModuleList()
        for i in range(self.start_level, self.backbone_end_level):
            l_conv = ConvModule(
                in_channels[i],
                out_channels,
                1,
                norm_cfg=norm_cfg,
                act_cfg=None)
            self.lateral_convs.append(l_conv)

        # add extra downsample layers (stride-2 pooling or conv)
        extra_levels = num_outs - self.backbone_end_level + self.start_level
        self.extra_downsamples = nn.ModuleList()
        for i in range(extra_levels):
            extra_conv = ConvModule(
                out_channels, out_channels, 1, norm_cfg=norm_cfg, act_cfg=None)
            self.extra_downsamples.append(
                nn.Sequential(extra_conv, nn.MaxPool2d(2, 2)))

        # add NAS FPN connections
        self.fpn_stages = nn.ModuleList()
        for _ in range(self.stack_times):
            stage = nn.ModuleDict()
            # gp(p6, p4) -> p4_1
            stage['gp_64_4'] = GlobalPoolingCell(
                in_channels=out_channels,
                out_channels=out_channels,
                out_norm_cfg=norm_cfg)
            # sum(p4_1, p4) -> p4_2
            stage['sum_44_4'] = SumCell(
                in_channels=out_channels,
                out_channels=out_channels,
                out_norm_cfg=norm_cfg)
            # sum(p4_2, p3) -> p3_out
            stage['sum_43_3'] = SumCell(
                in_channels=out_channels,
                out_channels=out_channels,
                out_norm_cfg=norm_cfg)
            # sum(p3_out, p4_2) -> p4_out
            stage['sum_34_4'] = SumCell(
                in_channels=out_channels,
                out_channels=out_channels,
                out_norm_cfg=norm_cfg)
            # sum(p5, gp(p4_out, p3_out)) -> p5_out
            stage['gp_43_5'] = GlobalPoolingCell(with_out_conv=False)
            stage['sum_55_5'] = SumCell(
                in_channels=out_channels,
                out_channels=out_channels,
                out_norm_cfg=norm_cfg)
            # sum(p7, gp(p5_out, p4_2)) -> p7_out
            stage['gp_54_7'] = GlobalPoolingCell(with_out_conv=False)
            stage['sum_77_7'] = SumCell(
                in_channels=out_channels,
                out_channels=out_channels,
                out_norm_cfg=norm_cfg)
            # gp(p7_out, p5_out) -> p6_out
            stage['gp_75_6'] = GlobalPoolingCell(
                in_channels=out_channels,
                out_channels=out_channels,
                out_norm_cfg=norm_cfg)
            self.fpn_stages.append(stage)

    def init_weights(self):
        """Initialize the weights of module."""
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                caffe2_xavier_init(m)

    def forward(self, inputs):
        """Forward function."""
        # build P3-P5
        feats = [
            lateral_conv(inputs[i + self.start_level])
            for i, lateral_conv in enumerate(self.lateral_convs)
        ]
        # build P6-P7 on top of P5
        for downsample in self.extra_downsamples:
            feats.append(downsample(feats[-1]))

        p3, p4, p5, p6, p7 = feats

        for stage in self.fpn_stages:
            # gp(p6, p4) -> p4_1
            p4_1 = stage['gp_64_4'](p6, p4, out_size=p4.shape[-2:])
            # sum(p4_1, p4) -> p4_2
            p4_2 = stage['sum_44_4'](p4_1, p4, out_size=p4.shape[-2:])
            # sum(p4_2, p3) -> p3_out
            p3 = stage['sum_43_3'](p4_2, p3, out_size=p3.shape[-2:])
            # sum(p3_out, p4_2) -> p4_out
            p4 = stage['sum_34_4'](p3, p4_2, out_size=p4.shape[-2:])
            # sum(p5, gp(p4_out, p3_out)) -> p5_out
            p5_tmp = stage['gp_43_5'](p4, p3, out_size=p5.shape[-2:])
            p5 = stage['sum_55_5'](p5, p5_tmp, out_size=p5.shape[-2:])
            # sum(p7, gp(p5_out, p4_2)) -> p7_out
            p7_tmp = stage['gp_54_7'](p5, p4_2, out_size=p7.shape[-2:])
            p7 = stage['sum_77_7'](p7, p7_tmp, out_size=p7.shape[-2:])
            # gp(p7_out, p5_out) -> p6_out
            p6 = stage['gp_75_6'](p7, p5, out_size=p6.shape[-2:])

        return p3, p4, p5, p6, p7