Spaces:
Runtime error
Runtime error
File size: 10,671 Bytes
b334e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import torch.nn as nn
from mmcv.cnn import ConvModule, build_upsample_layer, xavier_init
from mmcv.ops.carafe import CARAFEPack
from ..builder import NECKS
@NECKS.register_module()
class FPN_CARAFE(nn.Module):
"""FPN_CARAFE is a more flexible implementation of FPN. It allows more
choice for upsample methods during the top-down pathway.
It can reproduce the performance of ICCV 2019 paper
CARAFE: Content-Aware ReAssembly of FEatures
Please refer to https://arxiv.org/abs/1905.02188 for more details.
Args:
in_channels (list[int]): Number of channels for each input feature map.
out_channels (int): Output channels of feature pyramids.
num_outs (int): Number of output stages.
start_level (int): Start level of feature pyramids.
(Default: 0)
end_level (int): End level of feature pyramids.
(Default: -1 indicates the last level).
norm_cfg (dict): Dictionary to construct and config norm layer.
activate (str): Type of activation function in ConvModule
(Default: None indicates w/o activation).
order (dict): Order of components in ConvModule.
upsample (str): Type of upsample layer.
upsample_cfg (dict): Dictionary to construct and config upsample layer.
"""
def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
norm_cfg=None,
act_cfg=None,
order=('conv', 'norm', 'act'),
upsample_cfg=dict(
type='carafe',
up_kernel=5,
up_group=1,
encoder_kernel=3,
encoder_dilation=1)):
super(FPN_CARAFE, self).__init__()
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_ins = len(in_channels)
self.num_outs = num_outs
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.with_bias = norm_cfg is None
self.upsample_cfg = upsample_cfg.copy()
self.upsample = self.upsample_cfg.get('type')
self.relu = nn.ReLU(inplace=False)
self.order = order
assert order in [('conv', 'norm', 'act'), ('act', 'conv', 'norm')]
assert self.upsample in [
'nearest', 'bilinear', 'deconv', 'pixel_shuffle', 'carafe', None
]
if self.upsample in ['deconv', 'pixel_shuffle']:
assert hasattr(
self.upsample_cfg,
'upsample_kernel') and self.upsample_cfg.upsample_kernel > 0
self.upsample_kernel = self.upsample_cfg.pop('upsample_kernel')
if end_level == -1:
self.backbone_end_level = self.num_ins
assert num_outs >= self.num_ins - start_level
else:
# if end_level < inputs, no extra level is allowed
self.backbone_end_level = end_level
assert end_level <= len(in_channels)
assert num_outs == end_level - start_level
self.start_level = start_level
self.end_level = end_level
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
self.upsample_modules = nn.ModuleList()
for i in range(self.start_level, self.backbone_end_level):
l_conv = ConvModule(
in_channels[i],
out_channels,
1,
norm_cfg=norm_cfg,
bias=self.with_bias,
act_cfg=act_cfg,
inplace=False,
order=self.order)
fpn_conv = ConvModule(
out_channels,
out_channels,
3,
padding=1,
norm_cfg=self.norm_cfg,
bias=self.with_bias,
act_cfg=act_cfg,
inplace=False,
order=self.order)
if i != self.backbone_end_level - 1:
upsample_cfg_ = self.upsample_cfg.copy()
if self.upsample == 'deconv':
upsample_cfg_.update(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=self.upsample_kernel,
stride=2,
padding=(self.upsample_kernel - 1) // 2,
output_padding=(self.upsample_kernel - 1) // 2)
elif self.upsample == 'pixel_shuffle':
upsample_cfg_.update(
in_channels=out_channels,
out_channels=out_channels,
scale_factor=2,
upsample_kernel=self.upsample_kernel)
elif self.upsample == 'carafe':
upsample_cfg_.update(channels=out_channels, scale_factor=2)
else:
# suppress warnings
align_corners = (None
if self.upsample == 'nearest' else False)
upsample_cfg_.update(
scale_factor=2,
mode=self.upsample,
align_corners=align_corners)
upsample_module = build_upsample_layer(upsample_cfg_)
self.upsample_modules.append(upsample_module)
self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)
# add extra conv layers (e.g., RetinaNet)
extra_out_levels = (
num_outs - self.backbone_end_level + self.start_level)
if extra_out_levels >= 1:
for i in range(extra_out_levels):
in_channels = (
self.in_channels[self.backbone_end_level -
1] if i == 0 else out_channels)
extra_l_conv = ConvModule(
in_channels,
out_channels,
3,
stride=2,
padding=1,
norm_cfg=norm_cfg,
bias=self.with_bias,
act_cfg=act_cfg,
inplace=False,
order=self.order)
if self.upsample == 'deconv':
upsampler_cfg_ = dict(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=self.upsample_kernel,
stride=2,
padding=(self.upsample_kernel - 1) // 2,
output_padding=(self.upsample_kernel - 1) // 2)
elif self.upsample == 'pixel_shuffle':
upsampler_cfg_ = dict(
in_channels=out_channels,
out_channels=out_channels,
scale_factor=2,
upsample_kernel=self.upsample_kernel)
elif self.upsample == 'carafe':
upsampler_cfg_ = dict(
channels=out_channels,
scale_factor=2,
**self.upsample_cfg)
else:
# suppress warnings
align_corners = (None
if self.upsample == 'nearest' else False)
upsampler_cfg_ = dict(
scale_factor=2,
mode=self.upsample,
align_corners=align_corners)
upsampler_cfg_['type'] = self.upsample
upsample_module = build_upsample_layer(upsampler_cfg_)
extra_fpn_conv = ConvModule(
out_channels,
out_channels,
3,
padding=1,
norm_cfg=self.norm_cfg,
bias=self.with_bias,
act_cfg=act_cfg,
inplace=False,
order=self.order)
self.upsample_modules.append(upsample_module)
self.fpn_convs.append(extra_fpn_conv)
self.lateral_convs.append(extra_l_conv)
# default init_weights for conv(msra) and norm in ConvModule
def init_weights(self):
"""Initialize the weights of module."""
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
xavier_init(m, distribution='uniform')
for m in self.modules():
if isinstance(m, CARAFEPack):
m.init_weights()
def slice_as(self, src, dst):
"""Slice ``src`` as ``dst``
Note:
``src`` should have the same or larger size than ``dst``.
Args:
src (torch.Tensor): Tensors to be sliced.
dst (torch.Tensor): ``src`` will be sliced to have the same
size as ``dst``.
Returns:
torch.Tensor: Sliced tensor.
"""
assert (src.size(2) >= dst.size(2)) and (src.size(3) >= dst.size(3))
if src.size(2) == dst.size(2) and src.size(3) == dst.size(3):
return src
else:
return src[:, :, :dst.size(2), :dst.size(3)]
def tensor_add(self, a, b):
"""Add tensors ``a`` and ``b`` that might have different sizes."""
if a.size() == b.size():
c = a + b
else:
c = a + self.slice_as(b, a)
return c
def forward(self, inputs):
"""Forward function."""
assert len(inputs) == len(self.in_channels)
# build laterals
laterals = []
for i, lateral_conv in enumerate(self.lateral_convs):
if i <= self.backbone_end_level - self.start_level:
input = inputs[min(i + self.start_level, len(inputs) - 1)]
else:
input = laterals[-1]
lateral = lateral_conv(input)
laterals.append(lateral)
# build top-down path
for i in range(len(laterals) - 1, 0, -1):
if self.upsample is not None:
upsample_feat = self.upsample_modules[i - 1](laterals[i])
else:
upsample_feat = laterals[i]
laterals[i - 1] = self.tensor_add(laterals[i - 1], upsample_feat)
# build outputs
num_conv_outs = len(self.fpn_convs)
outs = []
for i in range(num_conv_outs):
out = self.fpn_convs[i](laterals[i])
outs.append(out)
return tuple(outs)
|