File size: 8,041 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Callable, List, Optional, Union

import torch

from ..dist_utils import master_only
from .hook import HOOKS, Hook


@HOOKS.register_module()
class ProfilerHook(Hook):
    """Profiler to analyze performance during training.

    PyTorch Profiler is a tool that allows the collection of the performance
    metrics during the training. More details on Profiler can be found at
    https://pytorch.org/docs/1.8.1/profiler.html#torch.profiler.profile

    Args:
        by_epoch (bool): Profile performance by epoch or by iteration.
            Default: True.
        profile_iters (int): Number of iterations for profiling.
            If ``by_epoch=True``, profile_iters indicates that they are the
            first profile_iters epochs at the beginning of the
            training, otherwise it indicates the first profile_iters
            iterations. Default: 1.
        activities (list[str]): List of activity groups (CPU, CUDA) to use in
            profiling. Default: ['cpu', 'cuda'].
        schedule (dict, optional): Config of generating the callable schedule.
            if schedule is None, profiler will not add step markers into the
            trace and table view. Default: None.
        on_trace_ready (callable, dict): Either a handler or a dict of generate
            handler. Default: None.
        record_shapes (bool): Save information about operator's input shapes.
            Default: False.
        profile_memory (bool): Track tensor memory allocation/deallocation.
            Default: False.
        with_stack (bool): Record source information (file and line number)
            for the ops. Default: False.
        with_flops (bool): Use formula to estimate the FLOPS of specific
            operators (matrix multiplication and 2D convolution).
            Default: False.
        json_trace_path (str, optional): Exports the collected trace in Chrome
            JSON format. Default: None.

    Example:
        >>> runner = ... # instantiate a Runner
        >>> # tensorboard trace
        >>> trace_config = dict(type='tb_trace', dir_name='work_dir')
        >>> profiler_config = dict(on_trace_ready=trace_config)
        >>> runner.register_profiler_hook(profiler_config)
        >>> runner.run(data_loaders=[trainloader], workflow=[('train', 1)])
    """

    def __init__(self,
                 by_epoch: bool = True,
                 profile_iters: int = 1,
                 activities: List[str] = ['cpu', 'cuda'],
                 schedule: Optional[dict] = None,
                 on_trace_ready: Optional[Union[Callable, dict]] = None,
                 record_shapes: bool = False,
                 profile_memory: bool = False,
                 with_stack: bool = False,
                 with_flops: bool = False,
                 json_trace_path: Optional[str] = None) -> None:
        try:
            from torch import profiler  # torch version >= 1.8.1
        except ImportError:
            raise ImportError('profiler is the new feature of torch1.8.1, '
                              f'but your version is {torch.__version__}')

        assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean.'
        self.by_epoch = by_epoch

        if profile_iters < 1:
            raise ValueError('profile_iters should be greater than 0, but got '
                             f'{profile_iters}')
        self.profile_iters = profile_iters

        if not isinstance(activities, list):
            raise ValueError(
                f'activities should be list, but got {type(activities)}')
        self.activities = []
        for activity in activities:
            activity = activity.lower()
            if activity == 'cpu':
                self.activities.append(profiler.ProfilerActivity.CPU)
            elif activity == 'cuda':
                self.activities.append(profiler.ProfilerActivity.CUDA)
            else:
                raise ValueError(
                    f'activity should be "cpu" or "cuda", but got {activity}')

        if schedule is not None:
            self.schedule = profiler.schedule(**schedule)
        else:
            self.schedule = None

        self.on_trace_ready = on_trace_ready
        self.record_shapes = record_shapes
        self.profile_memory = profile_memory
        self.with_stack = with_stack
        self.with_flops = with_flops
        self.json_trace_path = json_trace_path

    @master_only
    def before_run(self, runner):
        if self.by_epoch and runner.max_epochs < self.profile_iters:
            raise ValueError('self.profile_iters should not be greater than '
                             f'{runner.max_epochs}')

        if not self.by_epoch and runner.max_iters < self.profile_iters:
            raise ValueError('self.profile_iters should not be greater than '
                             f'{runner.max_iters}')

        if callable(self.on_trace_ready):  # handler
            _on_trace_ready = self.on_trace_ready
        elif isinstance(self.on_trace_ready, dict):  # config of handler
            trace_cfg = self.on_trace_ready.copy()
            trace_type = trace_cfg.pop('type')  # log_trace handler
            if trace_type == 'log_trace':

                def _log_handler(prof):
                    print(prof.key_averages().table(**trace_cfg))

                _on_trace_ready = _log_handler
            elif trace_type == 'tb_trace':  # tensorboard_trace handler
                try:
                    import torch_tb_profiler  # noqa: F401
                except ImportError:
                    raise ImportError('please run "pip install '
                                      'torch-tb-profiler" to install '
                                      'torch_tb_profiler')
                _on_trace_ready = torch.profiler.tensorboard_trace_handler(
                    **trace_cfg)
            else:
                raise ValueError('trace_type should be "log_trace" or '
                                 f'"tb_trace", but got {trace_type}')
        elif self.on_trace_ready is None:
            _on_trace_ready = None  # type: ignore
        else:
            raise ValueError('on_trace_ready should be handler, dict or None, '
                             f'but got {type(self.on_trace_ready)}')

        if runner.max_epochs > 1:
            warnings.warn(f'profiler will profile {runner.max_epochs} epochs '
                          'instead of 1 epoch. Since profiler will slow down '
                          'the training, it is recommended to train 1 epoch '
                          'with ProfilerHook and adjust your setting according'
                          ' to the profiler summary. During normal training '
                          '(epoch > 1), you may disable the ProfilerHook.')

        self.profiler = torch.profiler.profile(
            activities=self.activities,
            schedule=self.schedule,
            on_trace_ready=_on_trace_ready,
            record_shapes=self.record_shapes,
            profile_memory=self.profile_memory,
            with_stack=self.with_stack,
            with_flops=self.with_flops)

        self.profiler.__enter__()
        runner.logger.info('profiler is profiling...')

    @master_only
    def after_train_epoch(self, runner):
        if self.by_epoch and runner.epoch == self.profile_iters - 1:
            runner.logger.info('profiler may take a few minutes...')
            self.profiler.__exit__(None, None, None)
            if self.json_trace_path is not None:
                self.profiler.export_chrome_trace(self.json_trace_path)

    @master_only
    def after_train_iter(self, runner):
        self.profiler.step()
        if not self.by_epoch and runner.iter == self.profile_iters - 1:
            runner.logger.info('profiler may take a few minutes...')
            self.profiler.__exit__(None, None, None)
            if self.json_trace_path is not None:
                self.profiler.export_chrome_trace(self.json_trace_path)