File size: 15,603 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair, _single

from annotator.uniformer.mmcv.utils import deprecated_api_warning
from ..cnn import CONV_LAYERS
from ..utils import ext_loader, print_log

ext_module = ext_loader.load_ext('_ext', [
    'deform_conv_forward', 'deform_conv_backward_input',
    'deform_conv_backward_parameters'
])


class DeformConv2dFunction(Function):

    @staticmethod
    def symbolic(g,
                 input,
                 offset,
                 weight,
                 stride,
                 padding,
                 dilation,
                 groups,
                 deform_groups,
                 bias=False,
                 im2col_step=32):
        return g.op(
            'mmcv::MMCVDeformConv2d',
            input,
            offset,
            weight,
            stride_i=stride,
            padding_i=padding,
            dilation_i=dilation,
            groups_i=groups,
            deform_groups_i=deform_groups,
            bias_i=bias,
            im2col_step_i=im2col_step)

    @staticmethod
    def forward(ctx,
                input,
                offset,
                weight,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                deform_groups=1,
                bias=False,
                im2col_step=32):
        if input is not None and input.dim() != 4:
            raise ValueError(
                f'Expected 4D tensor as input, got {input.dim()}D tensor \
                  instead.')
        assert bias is False, 'Only support bias is False.'
        ctx.stride = _pair(stride)
        ctx.padding = _pair(padding)
        ctx.dilation = _pair(dilation)
        ctx.groups = groups
        ctx.deform_groups = deform_groups
        ctx.im2col_step = im2col_step

        # When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
        # amp won't cast the type of model (float32), but "offset" is cast
        # to float16 by nn.Conv2d automatically, leading to the type
        # mismatch with input (when it is float32) or weight.
        # The flag for whether to use fp16 or amp is the type of "offset",
        # we cast weight and input to temporarily support fp16 and amp
        # whatever the pytorch version is.
        input = input.type_as(offset)
        weight = weight.type_as(input)
        ctx.save_for_backward(input, offset, weight)

        output = input.new_empty(
            DeformConv2dFunction._output_size(ctx, input, weight))

        ctx.bufs_ = [input.new_empty(0), input.new_empty(0)]  # columns, ones

        cur_im2col_step = min(ctx.im2col_step, input.size(0))
        assert (input.size(0) %
                cur_im2col_step) == 0, 'im2col step must divide batchsize'
        ext_module.deform_conv_forward(
            input,
            weight,
            offset,
            output,
            ctx.bufs_[0],
            ctx.bufs_[1],
            kW=weight.size(3),
            kH=weight.size(2),
            dW=ctx.stride[1],
            dH=ctx.stride[0],
            padW=ctx.padding[1],
            padH=ctx.padding[0],
            dilationW=ctx.dilation[1],
            dilationH=ctx.dilation[0],
            group=ctx.groups,
            deformable_group=ctx.deform_groups,
            im2col_step=cur_im2col_step)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        input, offset, weight = ctx.saved_tensors

        grad_input = grad_offset = grad_weight = None

        cur_im2col_step = min(ctx.im2col_step, input.size(0))
        assert (input.size(0) % cur_im2col_step
                ) == 0, 'batch size must be divisible by im2col_step'

        grad_output = grad_output.contiguous()
        if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
            grad_input = torch.zeros_like(input)
            grad_offset = torch.zeros_like(offset)
            ext_module.deform_conv_backward_input(
                input,
                offset,
                grad_output,
                grad_input,
                grad_offset,
                weight,
                ctx.bufs_[0],
                kW=weight.size(3),
                kH=weight.size(2),
                dW=ctx.stride[1],
                dH=ctx.stride[0],
                padW=ctx.padding[1],
                padH=ctx.padding[0],
                dilationW=ctx.dilation[1],
                dilationH=ctx.dilation[0],
                group=ctx.groups,
                deformable_group=ctx.deform_groups,
                im2col_step=cur_im2col_step)

        if ctx.needs_input_grad[2]:
            grad_weight = torch.zeros_like(weight)
            ext_module.deform_conv_backward_parameters(
                input,
                offset,
                grad_output,
                grad_weight,
                ctx.bufs_[0],
                ctx.bufs_[1],
                kW=weight.size(3),
                kH=weight.size(2),
                dW=ctx.stride[1],
                dH=ctx.stride[0],
                padW=ctx.padding[1],
                padH=ctx.padding[0],
                dilationW=ctx.dilation[1],
                dilationH=ctx.dilation[0],
                group=ctx.groups,
                deformable_group=ctx.deform_groups,
                scale=1,
                im2col_step=cur_im2col_step)

        return grad_input, grad_offset, grad_weight, \
            None, None, None, None, None, None, None

    @staticmethod
    def _output_size(ctx, input, weight):
        channels = weight.size(0)
        output_size = (input.size(0), channels)
        for d in range(input.dim() - 2):
            in_size = input.size(d + 2)
            pad = ctx.padding[d]
            kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1
            stride_ = ctx.stride[d]
            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
        if not all(map(lambda s: s > 0, output_size)):
            raise ValueError(
                'convolution input is too small (output would be ' +
                'x'.join(map(str, output_size)) + ')')
        return output_size


deform_conv2d = DeformConv2dFunction.apply


class DeformConv2d(nn.Module):
    r"""Deformable 2D convolution.

    Applies a deformable 2D convolution over an input signal composed of
    several input planes. DeformConv2d was described in the paper
    `Deformable Convolutional Networks
    <https://arxiv.org/pdf/1703.06211.pdf>`_

    Note:
        The argument ``im2col_step`` was added in version 1.3.17, which means
        number of samples processed by the ``im2col_cuda_kernel`` per call.
        It enables users to define ``batch_size`` and ``im2col_step`` more
        flexibly and solved `issue mmcv#1440
        <https://github.com/open-mmlab/mmcv/issues/1440>`_.

    Args:
        in_channels (int): Number of channels in the input image.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size(int, tuple): Size of the convolving kernel.
        stride(int, tuple): Stride of the convolution. Default: 1.
        padding (int or tuple): Zero-padding added to both sides of the input.
            Default: 0.
        dilation (int or tuple): Spacing between kernel elements. Default: 1.
        groups (int): Number of blocked connections from input.
            channels to output channels. Default: 1.
        deform_groups (int): Number of deformable group partitions.
        bias (bool): If True, adds a learnable bias to the output.
            Default: False.
        im2col_step (int): Number of samples processed by im2col_cuda_kernel
            per call. It will work when ``batch_size`` > ``im2col_step``, but
            ``batch_size`` must be divisible by ``im2col_step``. Default: 32.
            `New in version 1.3.17.`
    """

    @deprecated_api_warning({'deformable_groups': 'deform_groups'},
                            cls_name='DeformConv2d')
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: Union[int, Tuple[int, ...]],
                 stride: Union[int, Tuple[int, ...]] = 1,
                 padding: Union[int, Tuple[int, ...]] = 0,
                 dilation: Union[int, Tuple[int, ...]] = 1,
                 groups: int = 1,
                 deform_groups: int = 1,
                 bias: bool = False,
                 im2col_step: int = 32) -> None:
        super(DeformConv2d, self).__init__()

        assert not bias, \
            f'bias={bias} is not supported in DeformConv2d.'
        assert in_channels % groups == 0, \
            f'in_channels {in_channels} cannot be divisible by groups {groups}'
        assert out_channels % groups == 0, \
            f'out_channels {out_channels} cannot be divisible by groups \
              {groups}'

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.groups = groups
        self.deform_groups = deform_groups
        self.im2col_step = im2col_step
        # enable compatibility with nn.Conv2d
        self.transposed = False
        self.output_padding = _single(0)

        # only weight, no bias
        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels // self.groups,
                         *self.kernel_size))

        self.reset_parameters()

    def reset_parameters(self):
        # switch the initialization of `self.weight` to the standard kaiming
        # method described in `Delving deep into rectifiers: Surpassing
        # human-level performance on ImageNet classification` - He, K. et al.
        # (2015), using a uniform distribution
        nn.init.kaiming_uniform_(self.weight, nonlinearity='relu')

    def forward(self, x: Tensor, offset: Tensor) -> Tensor:
        """Deformable Convolutional forward function.

        Args:
            x (Tensor): Input feature, shape (B, C_in, H_in, W_in)
            offset (Tensor): Offset for deformable convolution, shape
                (B, deform_groups*kernel_size[0]*kernel_size[1]*2,
                H_out, W_out), H_out, W_out are equal to the output's.

                An offset is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
                The spatial arrangement is like:

                .. code:: text

                    (x0, y0) (x1, y1) (x2, y2)
                    (x3, y3) (x4, y4) (x5, y5)
                    (x6, y6) (x7, y7) (x8, y8)

        Returns:
            Tensor: Output of the layer.
        """
        # To fix an assert error in deform_conv_cuda.cpp:128
        # input image is smaller than kernel
        input_pad = (x.size(2) < self.kernel_size[0]) or (x.size(3) <
                                                          self.kernel_size[1])
        if input_pad:
            pad_h = max(self.kernel_size[0] - x.size(2), 0)
            pad_w = max(self.kernel_size[1] - x.size(3), 0)
            x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
            offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0)
            offset = offset.contiguous()
        out = deform_conv2d(x, offset, self.weight, self.stride, self.padding,
                            self.dilation, self.groups, self.deform_groups,
                            False, self.im2col_step)
        if input_pad:
            out = out[:, :, :out.size(2) - pad_h, :out.size(3) -
                      pad_w].contiguous()
        return out

    def __repr__(self):
        s = self.__class__.__name__
        s += f'(in_channels={self.in_channels},\n'
        s += f'out_channels={self.out_channels},\n'
        s += f'kernel_size={self.kernel_size},\n'
        s += f'stride={self.stride},\n'
        s += f'padding={self.padding},\n'
        s += f'dilation={self.dilation},\n'
        s += f'groups={self.groups},\n'
        s += f'deform_groups={self.deform_groups},\n'
        # bias is not supported in DeformConv2d.
        s += 'bias=False)'
        return s


@CONV_LAYERS.register_module('DCN')
class DeformConv2dPack(DeformConv2d):
    """A Deformable Conv Encapsulation that acts as normal Conv layers.

    The offset tensor is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
    The spatial arrangement is like:

    .. code:: text

        (x0, y0) (x1, y1) (x2, y2)
        (x3, y3) (x4, y4) (x5, y5)
        (x6, y6) (x7, y7) (x8, y8)

    Args:
        in_channels (int): Same as nn.Conv2d.
        out_channels (int): Same as nn.Conv2d.
        kernel_size (int or tuple[int]): Same as nn.Conv2d.
        stride (int or tuple[int]): Same as nn.Conv2d.
        padding (int or tuple[int]): Same as nn.Conv2d.
        dilation (int or tuple[int]): Same as nn.Conv2d.
        groups (int): Same as nn.Conv2d.
        bias (bool or str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
            False.
    """

    _version = 2

    def __init__(self, *args, **kwargs):
        super(DeformConv2dPack, self).__init__(*args, **kwargs)
        self.conv_offset = nn.Conv2d(
            self.in_channels,
            self.deform_groups * 2 * self.kernel_size[0] * self.kernel_size[1],
            kernel_size=self.kernel_size,
            stride=_pair(self.stride),
            padding=_pair(self.padding),
            dilation=_pair(self.dilation),
            bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset.weight.data.zero_()
        self.conv_offset.bias.data.zero_()

    def forward(self, x):
        offset = self.conv_offset(x)
        return deform_conv2d(x, offset, self.weight, self.stride, self.padding,
                             self.dilation, self.groups, self.deform_groups,
                             False, self.im2col_step)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        version = local_metadata.get('version', None)

        if version is None or version < 2:
            # the key is different in early versions
            # In version < 2, DeformConvPack loads previous benchmark models.
            if (prefix + 'conv_offset.weight' not in state_dict
                    and prefix[:-1] + '_offset.weight' in state_dict):
                state_dict[prefix + 'conv_offset.weight'] = state_dict.pop(
                    prefix[:-1] + '_offset.weight')
            if (prefix + 'conv_offset.bias' not in state_dict
                    and prefix[:-1] + '_offset.bias' in state_dict):
                state_dict[prefix +
                           'conv_offset.bias'] = state_dict.pop(prefix[:-1] +
                                                                '_offset.bias')

        if version is not None and version > 1:
            print_log(
                f'DeformConv2dPack {prefix.rstrip(".")} is upgraded to '
                'version 2.',
                logger='root')

        super()._load_from_state_dict(state_dict, prefix, local_metadata,
                                      strict, missing_keys, unexpected_keys,
                                      error_msgs)