Spaces:
Runtime error
Runtime error
File size: 15,603 Bytes
b334e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair, _single
from annotator.uniformer.mmcv.utils import deprecated_api_warning
from ..cnn import CONV_LAYERS
from ..utils import ext_loader, print_log
ext_module = ext_loader.load_ext('_ext', [
'deform_conv_forward', 'deform_conv_backward_input',
'deform_conv_backward_parameters'
])
class DeformConv2dFunction(Function):
@staticmethod
def symbolic(g,
input,
offset,
weight,
stride,
padding,
dilation,
groups,
deform_groups,
bias=False,
im2col_step=32):
return g.op(
'mmcv::MMCVDeformConv2d',
input,
offset,
weight,
stride_i=stride,
padding_i=padding,
dilation_i=dilation,
groups_i=groups,
deform_groups_i=deform_groups,
bias_i=bias,
im2col_step_i=im2col_step)
@staticmethod
def forward(ctx,
input,
offset,
weight,
stride=1,
padding=0,
dilation=1,
groups=1,
deform_groups=1,
bias=False,
im2col_step=32):
if input is not None and input.dim() != 4:
raise ValueError(
f'Expected 4D tensor as input, got {input.dim()}D tensor \
instead.')
assert bias is False, 'Only support bias is False.'
ctx.stride = _pair(stride)
ctx.padding = _pair(padding)
ctx.dilation = _pair(dilation)
ctx.groups = groups
ctx.deform_groups = deform_groups
ctx.im2col_step = im2col_step
# When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
# amp won't cast the type of model (float32), but "offset" is cast
# to float16 by nn.Conv2d automatically, leading to the type
# mismatch with input (when it is float32) or weight.
# The flag for whether to use fp16 or amp is the type of "offset",
# we cast weight and input to temporarily support fp16 and amp
# whatever the pytorch version is.
input = input.type_as(offset)
weight = weight.type_as(input)
ctx.save_for_backward(input, offset, weight)
output = input.new_empty(
DeformConv2dFunction._output_size(ctx, input, weight))
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones
cur_im2col_step = min(ctx.im2col_step, input.size(0))
assert (input.size(0) %
cur_im2col_step) == 0, 'im2col step must divide batchsize'
ext_module.deform_conv_forward(
input,
weight,
offset,
output,
ctx.bufs_[0],
ctx.bufs_[1],
kW=weight.size(3),
kH=weight.size(2),
dW=ctx.stride[1],
dH=ctx.stride[0],
padW=ctx.padding[1],
padH=ctx.padding[0],
dilationW=ctx.dilation[1],
dilationH=ctx.dilation[0],
group=ctx.groups,
deformable_group=ctx.deform_groups,
im2col_step=cur_im2col_step)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
input, offset, weight = ctx.saved_tensors
grad_input = grad_offset = grad_weight = None
cur_im2col_step = min(ctx.im2col_step, input.size(0))
assert (input.size(0) % cur_im2col_step
) == 0, 'batch size must be divisible by im2col_step'
grad_output = grad_output.contiguous()
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
grad_input = torch.zeros_like(input)
grad_offset = torch.zeros_like(offset)
ext_module.deform_conv_backward_input(
input,
offset,
grad_output,
grad_input,
grad_offset,
weight,
ctx.bufs_[0],
kW=weight.size(3),
kH=weight.size(2),
dW=ctx.stride[1],
dH=ctx.stride[0],
padW=ctx.padding[1],
padH=ctx.padding[0],
dilationW=ctx.dilation[1],
dilationH=ctx.dilation[0],
group=ctx.groups,
deformable_group=ctx.deform_groups,
im2col_step=cur_im2col_step)
if ctx.needs_input_grad[2]:
grad_weight = torch.zeros_like(weight)
ext_module.deform_conv_backward_parameters(
input,
offset,
grad_output,
grad_weight,
ctx.bufs_[0],
ctx.bufs_[1],
kW=weight.size(3),
kH=weight.size(2),
dW=ctx.stride[1],
dH=ctx.stride[0],
padW=ctx.padding[1],
padH=ctx.padding[0],
dilationW=ctx.dilation[1],
dilationH=ctx.dilation[0],
group=ctx.groups,
deformable_group=ctx.deform_groups,
scale=1,
im2col_step=cur_im2col_step)
return grad_input, grad_offset, grad_weight, \
None, None, None, None, None, None, None
@staticmethod
def _output_size(ctx, input, weight):
channels = weight.size(0)
output_size = (input.size(0), channels)
for d in range(input.dim() - 2):
in_size = input.size(d + 2)
pad = ctx.padding[d]
kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1
stride_ = ctx.stride[d]
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
if not all(map(lambda s: s > 0, output_size)):
raise ValueError(
'convolution input is too small (output would be ' +
'x'.join(map(str, output_size)) + ')')
return output_size
deform_conv2d = DeformConv2dFunction.apply
class DeformConv2d(nn.Module):
r"""Deformable 2D convolution.
Applies a deformable 2D convolution over an input signal composed of
several input planes. DeformConv2d was described in the paper
`Deformable Convolutional Networks
<https://arxiv.org/pdf/1703.06211.pdf>`_
Note:
The argument ``im2col_step`` was added in version 1.3.17, which means
number of samples processed by the ``im2col_cuda_kernel`` per call.
It enables users to define ``batch_size`` and ``im2col_step`` more
flexibly and solved `issue mmcv#1440
<https://github.com/open-mmlab/mmcv/issues/1440>`_.
Args:
in_channels (int): Number of channels in the input image.
out_channels (int): Number of channels produced by the convolution.
kernel_size(int, tuple): Size of the convolving kernel.
stride(int, tuple): Stride of the convolution. Default: 1.
padding (int or tuple): Zero-padding added to both sides of the input.
Default: 0.
dilation (int or tuple): Spacing between kernel elements. Default: 1.
groups (int): Number of blocked connections from input.
channels to output channels. Default: 1.
deform_groups (int): Number of deformable group partitions.
bias (bool): If True, adds a learnable bias to the output.
Default: False.
im2col_step (int): Number of samples processed by im2col_cuda_kernel
per call. It will work when ``batch_size`` > ``im2col_step``, but
``batch_size`` must be divisible by ``im2col_step``. Default: 32.
`New in version 1.3.17.`
"""
@deprecated_api_warning({'deformable_groups': 'deform_groups'},
cls_name='DeformConv2d')
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, ...]],
stride: Union[int, Tuple[int, ...]] = 1,
padding: Union[int, Tuple[int, ...]] = 0,
dilation: Union[int, Tuple[int, ...]] = 1,
groups: int = 1,
deform_groups: int = 1,
bias: bool = False,
im2col_step: int = 32) -> None:
super(DeformConv2d, self).__init__()
assert not bias, \
f'bias={bias} is not supported in DeformConv2d.'
assert in_channels % groups == 0, \
f'in_channels {in_channels} cannot be divisible by groups {groups}'
assert out_channels % groups == 0, \
f'out_channels {out_channels} cannot be divisible by groups \
{groups}'
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.groups = groups
self.deform_groups = deform_groups
self.im2col_step = im2col_step
# enable compatibility with nn.Conv2d
self.transposed = False
self.output_padding = _single(0)
# only weight, no bias
self.weight = nn.Parameter(
torch.Tensor(out_channels, in_channels // self.groups,
*self.kernel_size))
self.reset_parameters()
def reset_parameters(self):
# switch the initialization of `self.weight` to the standard kaiming
# method described in `Delving deep into rectifiers: Surpassing
# human-level performance on ImageNet classification` - He, K. et al.
# (2015), using a uniform distribution
nn.init.kaiming_uniform_(self.weight, nonlinearity='relu')
def forward(self, x: Tensor, offset: Tensor) -> Tensor:
"""Deformable Convolutional forward function.
Args:
x (Tensor): Input feature, shape (B, C_in, H_in, W_in)
offset (Tensor): Offset for deformable convolution, shape
(B, deform_groups*kernel_size[0]*kernel_size[1]*2,
H_out, W_out), H_out, W_out are equal to the output's.
An offset is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
The spatial arrangement is like:
.. code:: text
(x0, y0) (x1, y1) (x2, y2)
(x3, y3) (x4, y4) (x5, y5)
(x6, y6) (x7, y7) (x8, y8)
Returns:
Tensor: Output of the layer.
"""
# To fix an assert error in deform_conv_cuda.cpp:128
# input image is smaller than kernel
input_pad = (x.size(2) < self.kernel_size[0]) or (x.size(3) <
self.kernel_size[1])
if input_pad:
pad_h = max(self.kernel_size[0] - x.size(2), 0)
pad_w = max(self.kernel_size[1] - x.size(3), 0)
x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0)
offset = offset.contiguous()
out = deform_conv2d(x, offset, self.weight, self.stride, self.padding,
self.dilation, self.groups, self.deform_groups,
False, self.im2col_step)
if input_pad:
out = out[:, :, :out.size(2) - pad_h, :out.size(3) -
pad_w].contiguous()
return out
def __repr__(self):
s = self.__class__.__name__
s += f'(in_channels={self.in_channels},\n'
s += f'out_channels={self.out_channels},\n'
s += f'kernel_size={self.kernel_size},\n'
s += f'stride={self.stride},\n'
s += f'padding={self.padding},\n'
s += f'dilation={self.dilation},\n'
s += f'groups={self.groups},\n'
s += f'deform_groups={self.deform_groups},\n'
# bias is not supported in DeformConv2d.
s += 'bias=False)'
return s
@CONV_LAYERS.register_module('DCN')
class DeformConv2dPack(DeformConv2d):
"""A Deformable Conv Encapsulation that acts as normal Conv layers.
The offset tensor is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`.
The spatial arrangement is like:
.. code:: text
(x0, y0) (x1, y1) (x2, y2)
(x3, y3) (x4, y4) (x5, y5)
(x6, y6) (x7, y7) (x8, y8)
Args:
in_channels (int): Same as nn.Conv2d.
out_channels (int): Same as nn.Conv2d.
kernel_size (int or tuple[int]): Same as nn.Conv2d.
stride (int or tuple[int]): Same as nn.Conv2d.
padding (int or tuple[int]): Same as nn.Conv2d.
dilation (int or tuple[int]): Same as nn.Conv2d.
groups (int): Same as nn.Conv2d.
bias (bool or str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
False.
"""
_version = 2
def __init__(self, *args, **kwargs):
super(DeformConv2dPack, self).__init__(*args, **kwargs)
self.conv_offset = nn.Conv2d(
self.in_channels,
self.deform_groups * 2 * self.kernel_size[0] * self.kernel_size[1],
kernel_size=self.kernel_size,
stride=_pair(self.stride),
padding=_pair(self.padding),
dilation=_pair(self.dilation),
bias=True)
self.init_offset()
def init_offset(self):
self.conv_offset.weight.data.zero_()
self.conv_offset.bias.data.zero_()
def forward(self, x):
offset = self.conv_offset(x)
return deform_conv2d(x, offset, self.weight, self.stride, self.padding,
self.dilation, self.groups, self.deform_groups,
False, self.im2col_step)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
version = local_metadata.get('version', None)
if version is None or version < 2:
# the key is different in early versions
# In version < 2, DeformConvPack loads previous benchmark models.
if (prefix + 'conv_offset.weight' not in state_dict
and prefix[:-1] + '_offset.weight' in state_dict):
state_dict[prefix + 'conv_offset.weight'] = state_dict.pop(
prefix[:-1] + '_offset.weight')
if (prefix + 'conv_offset.bias' not in state_dict
and prefix[:-1] + '_offset.bias' in state_dict):
state_dict[prefix +
'conv_offset.bias'] = state_dict.pop(prefix[:-1] +
'_offset.bias')
if version is not None and version > 1:
print_log(
f'DeformConv2dPack {prefix.rstrip(".")} is upgraded to '
'version 2.',
logger='root')
super()._load_from_state_dict(state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys,
error_msgs)
|