File size: 5,417 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F

from .registry import CONV_LAYERS


def conv_ws_2d(input,
               weight,
               bias=None,
               stride=1,
               padding=0,
               dilation=1,
               groups=1,
               eps=1e-5):
    c_in = weight.size(0)
    weight_flat = weight.view(c_in, -1)
    mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
    std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
    weight = (weight - mean) / (std + eps)
    return F.conv2d(input, weight, bias, stride, padding, dilation, groups)


@CONV_LAYERS.register_module('ConvWS')
class ConvWS2d(nn.Conv2d):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True,
                 eps=1e-5):
        super(ConvWS2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias)
        self.eps = eps

    def forward(self, x):
        return conv_ws_2d(x, self.weight, self.bias, self.stride, self.padding,
                          self.dilation, self.groups, self.eps)


@CONV_LAYERS.register_module(name='ConvAWS')
class ConvAWS2d(nn.Conv2d):
    """AWS (Adaptive Weight Standardization)

    This is a variant of Weight Standardization
    (https://arxiv.org/pdf/1903.10520.pdf)
    It is used in DetectoRS to avoid NaN
    (https://arxiv.org/pdf/2006.02334.pdf)

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the conv kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of
            the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements.
            Default: 1
        groups (int, optional): Number of blocked connections from input
            channels to output channels. Default: 1
        bias (bool, optional): If set True, adds a learnable bias to the
            output. Default: True
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias)
        self.register_buffer('weight_gamma',
                             torch.ones(self.out_channels, 1, 1, 1))
        self.register_buffer('weight_beta',
                             torch.zeros(self.out_channels, 1, 1, 1))

    def _get_weight(self, weight):
        weight_flat = weight.view(weight.size(0), -1)
        mean = weight_flat.mean(dim=1).view(-1, 1, 1, 1)
        std = torch.sqrt(weight_flat.var(dim=1) + 1e-5).view(-1, 1, 1, 1)
        weight = (weight - mean) / std
        weight = self.weight_gamma * weight + self.weight_beta
        return weight

    def forward(self, x):
        weight = self._get_weight(self.weight)
        return F.conv2d(x, weight, self.bias, self.stride, self.padding,
                        self.dilation, self.groups)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        """Override default load function.

        AWS overrides the function _load_from_state_dict to recover
        weight_gamma and weight_beta if they are missing. If weight_gamma and
        weight_beta are found in the checkpoint, this function will return
        after super()._load_from_state_dict. Otherwise, it will compute the
        mean and std of the pretrained weights and store them in weight_beta
        and weight_gamma.
        """

        self.weight_gamma.data.fill_(-1)
        local_missing_keys = []
        super()._load_from_state_dict(state_dict, prefix, local_metadata,
                                      strict, local_missing_keys,
                                      unexpected_keys, error_msgs)
        if self.weight_gamma.data.mean() > 0:
            for k in local_missing_keys:
                missing_keys.append(k)
            return
        weight = self.weight.data
        weight_flat = weight.view(weight.size(0), -1)
        mean = weight_flat.mean(dim=1).view(-1, 1, 1, 1)
        std = torch.sqrt(weight_flat.var(dim=1) + 1e-5).view(-1, 1, 1, 1)
        self.weight_beta.data.copy_(mean)
        self.weight_gamma.data.copy_(std)
        missing_gamma_beta = [
            k for k in local_missing_keys
            if k.endswith('weight_gamma') or k.endswith('weight_beta')
        ]
        for k in missing_gamma_beta:
            local_missing_keys.remove(k)
        for k in local_missing_keys:
            missing_keys.append(k)