File size: 5,784 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from math import sqrt

import torch


def gaussian2D(radius, sigma=1, dtype=torch.float32, device='cpu'):
    """Generate 2D gaussian kernel.

    Args:
        radius (int): Radius of gaussian kernel.
        sigma (int): Sigma of gaussian function. Default: 1.
        dtype (torch.dtype): Dtype of gaussian tensor. Default: torch.float32.
        device (str): Device of gaussian tensor. Default: 'cpu'.

    Returns:
        h (Tensor): Gaussian kernel with a
            ``(2 * radius + 1) * (2 * radius + 1)`` shape.
    """
    x = torch.arange(
        -radius, radius + 1, dtype=dtype, device=device).view(1, -1)
    y = torch.arange(
        -radius, radius + 1, dtype=dtype, device=device).view(-1, 1)

    h = (-(x * x + y * y) / (2 * sigma * sigma)).exp()

    h[h < torch.finfo(h.dtype).eps * h.max()] = 0
    return h


def gen_gaussian_target(heatmap, center, radius, k=1):
    """Generate 2D gaussian heatmap.

    Args:
        heatmap (Tensor): Input heatmap, the gaussian kernel will cover on
            it and maintain the max value.
        center (list[int]): Coord of gaussian kernel's center.
        radius (int): Radius of gaussian kernel.
        k (int): Coefficient of gaussian kernel. Default: 1.

    Returns:
        out_heatmap (Tensor): Updated heatmap covered by gaussian kernel.
    """
    diameter = 2 * radius + 1
    gaussian_kernel = gaussian2D(
        radius, sigma=diameter / 6, dtype=heatmap.dtype, device=heatmap.device)

    x, y = center

    height, width = heatmap.shape[:2]

    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)

    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = gaussian_kernel[radius - top:radius + bottom,
                                      radius - left:radius + right]
    out_heatmap = heatmap
    torch.max(
        masked_heatmap,
        masked_gaussian * k,
        out=out_heatmap[y - top:y + bottom, x - left:x + right])

    return out_heatmap


def gaussian_radius(det_size, min_overlap):
    r"""Generate 2D gaussian radius.

    This function is modified from the `official github repo
    <https://github.com/princeton-vl/CornerNet-Lite/blob/master/core/sample/
    utils.py#L65>`_.

    Given ``min_overlap``, radius could computed by a quadratic equation
    according to Vieta's formulas.

    There are 3 cases for computing gaussian radius, details are following:

    - Explanation of figure: ``lt`` and ``br`` indicates the left-top and
      bottom-right corner of ground truth box. ``x`` indicates the
      generated corner at the limited position when ``radius=r``.

    - Case1: one corner is inside the gt box and the other is outside.

    .. code:: text

        |<   width   >|

        lt-+----------+         -
        |  |          |         ^
        +--x----------+--+
        |  |          |  |
        |  |          |  |    height
        |  | overlap  |  |
        |  |          |  |
        |  |          |  |      v
        +--+---------br--+      -
           |          |  |
           +----------+--x

    To ensure IoU of generated box and gt box is larger than ``min_overlap``:

    .. math::
        \cfrac{(w-r)*(h-r)}{w*h+(w+h)r-r^2} \ge {iou} \quad\Rightarrow\quad
        {r^2-(w+h)r+\cfrac{1-iou}{1+iou}*w*h} \ge 0 \\
        {a} = 1,\quad{b} = {-(w+h)},\quad{c} = {\cfrac{1-iou}{1+iou}*w*h}
        {r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}

    - Case2: both two corners are inside the gt box.

    .. code:: text

        |<   width   >|

        lt-+----------+         -
        |  |          |         ^
        +--x-------+  |
        |  |       |  |
        |  |overlap|  |       height
        |  |       |  |
        |  +-------x--+
        |          |  |         v
        +----------+-br         -

    To ensure IoU of generated box and gt box is larger than ``min_overlap``:

    .. math::
        \cfrac{(w-2*r)*(h-2*r)}{w*h} \ge {iou} \quad\Rightarrow\quad
        {4r^2-2(w+h)r+(1-iou)*w*h} \ge 0 \\
        {a} = 4,\quad {b} = {-2(w+h)},\quad {c} = {(1-iou)*w*h}
        {r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}

    - Case3: both two corners are outside the gt box.

    .. code:: text

           |<   width   >|

        x--+----------------+
        |  |                |
        +-lt-------------+  |   -
        |  |             |  |   ^
        |  |             |  |
        |  |   overlap   |  | height
        |  |             |  |
        |  |             |  |   v
        |  +------------br--+   -
        |                |  |
        +----------------+--x

    To ensure IoU of generated box and gt box is larger than ``min_overlap``:

    .. math::
        \cfrac{w*h}{(w+2*r)*(h+2*r)} \ge {iou} \quad\Rightarrow\quad
        {4*iou*r^2+2*iou*(w+h)r+(iou-1)*w*h} \le 0 \\
        {a} = {4*iou},\quad {b} = {2*iou*(w+h)},\quad {c} = {(iou-1)*w*h} \\
        {r} \le \cfrac{-b+\sqrt{b^2-4*a*c}}{2*a}

    Args:
        det_size (list[int]): Shape of object.
        min_overlap (float): Min IoU with ground truth for boxes generated by
            keypoints inside the gaussian kernel.

    Returns:
        radius (int): Radius of gaussian kernel.
    """
    height, width = det_size

    a1 = 1
    b1 = (height + width)
    c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
    sq1 = sqrt(b1**2 - 4 * a1 * c1)
    r1 = (b1 - sq1) / (2 * a1)

    a2 = 4
    b2 = 2 * (height + width)
    c2 = (1 - min_overlap) * width * height
    sq2 = sqrt(b2**2 - 4 * a2 * c2)
    r2 = (b2 - sq2) / (2 * a2)

    a3 = 4 * min_overlap
    b3 = -2 * min_overlap * (height + width)
    c3 = (min_overlap - 1) * width * height
    sq3 = sqrt(b3**2 - 4 * a3 * c3)
    r3 = (b3 + sq3) / (2 * a3)
    return min(r1, r2, r3)