File size: 6,129 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch

from mmdet.core import bbox2result
from ..builder import DETECTORS, build_head
from .single_stage import SingleStageDetector


@DETECTORS.register_module()
class YOLACT(SingleStageDetector):
    """Implementation of `YOLACT <https://arxiv.org/abs/1904.02689>`_"""

    def __init__(self,
                 backbone,
                 neck,
                 bbox_head,
                 segm_head,
                 mask_head,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg,
                                     test_cfg, pretrained)
        self.segm_head = build_head(segm_head)
        self.mask_head = build_head(mask_head)
        self.init_segm_mask_weights()

    def init_segm_mask_weights(self):
        """Initialize weights of the YOLACT segm head and YOLACT mask head."""
        self.segm_head.init_weights()
        self.mask_head.init_weights()

    def forward_dummy(self, img):
        """Used for computing network flops.

        See `mmdetection/tools/analysis_tools/get_flops.py`
        """
        raise NotImplementedError

    def forward_train(self,
                      img,
                      img_metas,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None):
        """
        Args:
            img (Tensor): of shape (N, C, H, W) encoding input images.
                Typically these should be mean centered and std scaled.
            img_metas (list[dict]): list of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.
            gt_masks (None | Tensor) : true segmentation masks for each box
                used if the architecture supports a segmentation task.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        # convert Bitmap mask or Polygon Mask to Tensor here
        gt_masks = [
            gt_mask.to_tensor(dtype=torch.uint8, device=img.device)
            for gt_mask in gt_masks
        ]

        x = self.extract_feat(img)

        cls_score, bbox_pred, coeff_pred = self.bbox_head(x)
        bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels,
                                                          img_metas)
        losses, sampling_results = self.bbox_head.loss(
            *bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)

        segm_head_outs = self.segm_head(x[0])
        loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels)
        losses.update(loss_segm)

        mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas,
                                   sampling_results)
        loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes,
                                        img_metas, sampling_results)
        losses.update(loss_mask)

        # check NaN and Inf
        for loss_name in losses.keys():
            assert torch.isfinite(torch.stack(losses[loss_name]))\
                .all().item(), '{} becomes infinite or NaN!'\
                .format(loss_name)

        return losses

    def simple_test(self, img, img_metas, rescale=False):
        """Test function without test time augmentation."""
        x = self.extract_feat(img)

        cls_score, bbox_pred, coeff_pred = self.bbox_head(x)

        bbox_inputs = (cls_score, bbox_pred,
                       coeff_pred) + (img_metas, self.test_cfg, rescale)
        det_bboxes, det_labels, det_coeffs = self.bbox_head.get_bboxes(
            *bbox_inputs)
        bbox_results = [
            bbox2result(det_bbox, det_label, self.bbox_head.num_classes)
            for det_bbox, det_label in zip(det_bboxes, det_labels)
        ]

        num_imgs = len(img_metas)
        scale_factors = tuple(meta['scale_factor'] for meta in img_metas)
        if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
            segm_results = [[[] for _ in range(self.mask_head.num_classes)]
                            for _ in range(num_imgs)]
        else:
            # if det_bboxes is rescaled to the original image size, we need to
            # rescale it back to the testing scale to obtain RoIs.
            if rescale and not isinstance(scale_factors[0], float):
                scale_factors = [
                    torch.from_numpy(scale_factor).to(det_bboxes[0].device)
                    for scale_factor in scale_factors
                ]
            _bboxes = [
                det_bboxes[i][:, :4] *
                scale_factors[i] if rescale else det_bboxes[i][:, :4]
                for i in range(len(det_bboxes))
            ]
            mask_preds = self.mask_head(x[0], det_coeffs, _bboxes, img_metas)
            # apply mask post-processing to each image individually
            segm_results = []
            for i in range(num_imgs):
                if det_bboxes[i].shape[0] == 0:
                    segm_results.append(
                        [[] for _ in range(self.mask_head.num_classes)])
                else:
                    segm_result = self.mask_head.get_seg_masks(
                        mask_preds[i], det_labels[i], img_metas[i], rescale)
                    segm_results.append(segm_result)
        return list(zip(bbox_results, segm_results))

    def aug_test(self, imgs, img_metas, rescale=False):
        """Test with augmentations."""
        raise NotImplementedError