Spaces:
Runtime error
Runtime error
File size: 36,391 Bytes
b334e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
import copy
import cv2
import mmcv
import numpy as np
from ..builder import PIPELINES
from .compose import Compose
_MAX_LEVEL = 10
def level_to_value(level, max_value):
"""Map from level to values based on max_value."""
return (level / _MAX_LEVEL) * max_value
def enhance_level_to_value(level, a=1.8, b=0.1):
"""Map from level to values."""
return (level / _MAX_LEVEL) * a + b
def random_negative(value, random_negative_prob):
"""Randomly negate value based on random_negative_prob."""
return -value if np.random.rand() < random_negative_prob else value
def bbox2fields():
"""The key correspondence from bboxes to labels, masks and
segmentations."""
bbox2label = {
'gt_bboxes': 'gt_labels',
'gt_bboxes_ignore': 'gt_labels_ignore'
}
bbox2mask = {
'gt_bboxes': 'gt_masks',
'gt_bboxes_ignore': 'gt_masks_ignore'
}
bbox2seg = {
'gt_bboxes': 'gt_semantic_seg',
}
return bbox2label, bbox2mask, bbox2seg
@PIPELINES.register_module()
class AutoAugment(object):
"""Auto augmentation.
This data augmentation is proposed in `Learning Data Augmentation
Strategies for Object Detection <https://arxiv.org/pdf/1906.11172>`_.
TODO: Implement 'Shear', 'Sharpness' and 'Rotate' transforms
Args:
policies (list[list[dict]]): The policies of auto augmentation. Each
policy in ``policies`` is a specific augmentation policy, and is
composed by several augmentations (dict). When AutoAugment is
called, a random policy in ``policies`` will be selected to
augment images.
Examples:
>>> replace = (104, 116, 124)
>>> policies = [
>>> [
>>> dict(type='Sharpness', prob=0.0, level=8),
>>> dict(
>>> type='Shear',
>>> prob=0.4,
>>> level=0,
>>> replace=replace,
>>> axis='x')
>>> ],
>>> [
>>> dict(
>>> type='Rotate',
>>> prob=0.6,
>>> level=10,
>>> replace=replace),
>>> dict(type='Color', prob=1.0, level=6)
>>> ]
>>> ]
>>> augmentation = AutoAugment(policies)
>>> img = np.ones(100, 100, 3)
>>> gt_bboxes = np.ones(10, 4)
>>> results = dict(img=img, gt_bboxes=gt_bboxes)
>>> results = augmentation(results)
"""
def __init__(self, policies):
assert isinstance(policies, list) and len(policies) > 0, \
'Policies must be a non-empty list.'
for policy in policies:
assert isinstance(policy, list) and len(policy) > 0, \
'Each policy in policies must be a non-empty list.'
for augment in policy:
assert isinstance(augment, dict) and 'type' in augment, \
'Each specific augmentation must be a dict with key' \
' "type".'
self.policies = copy.deepcopy(policies)
self.transforms = [Compose(policy) for policy in self.policies]
def __call__(self, results):
transform = np.random.choice(self.transforms)
return transform(results)
def __repr__(self):
return f'{self.__class__.__name__}(policies={self.policies})'
@PIPELINES.register_module()
class Shear(object):
"""Apply Shear Transformation to image (and its corresponding bbox, mask,
segmentation).
Args:
level (int | float): The level should be in range [0,_MAX_LEVEL].
img_fill_val (int | float | tuple): The filled values for image border.
If float, the same fill value will be used for all the three
channels of image. If tuple, the should be 3 elements.
seg_ignore_label (int): The fill value used for segmentation map.
Note this value must equals ``ignore_label`` in ``semantic_head``
of the corresponding config. Default 255.
prob (float): The probability for performing Shear and should be in
range [0, 1].
direction (str): The direction for shear, either "horizontal"
or "vertical".
max_shear_magnitude (float): The maximum magnitude for Shear
transformation.
random_negative_prob (float): The probability that turns the
offset negative. Should be in range [0,1]
interpolation (str): Same as in :func:`mmcv.imshear`.
"""
def __init__(self,
level,
img_fill_val=128,
seg_ignore_label=255,
prob=0.5,
direction='horizontal',
max_shear_magnitude=0.3,
random_negative_prob=0.5,
interpolation='bilinear'):
assert isinstance(level, (int, float)), 'The level must be type ' \
f'int or float, got {type(level)}.'
assert 0 <= level <= _MAX_LEVEL, 'The level should be in range ' \
f'[0,{_MAX_LEVEL}], got {level}.'
if isinstance(img_fill_val, (float, int)):
img_fill_val = tuple([float(img_fill_val)] * 3)
elif isinstance(img_fill_val, tuple):
assert len(img_fill_val) == 3, 'img_fill_val as tuple must ' \
f'have 3 elements. got {len(img_fill_val)}.'
img_fill_val = tuple([float(val) for val in img_fill_val])
else:
raise ValueError(
'img_fill_val must be float or tuple with 3 elements.')
assert np.all([0 <= val <= 255 for val in img_fill_val]), 'all ' \
'elements of img_fill_val should between range [0,255].' \
f'got {img_fill_val}.'
assert 0 <= prob <= 1.0, 'The probability of shear should be in ' \
f'range [0,1]. got {prob}.'
assert direction in ('horizontal', 'vertical'), 'direction must ' \
f'in be either "horizontal" or "vertical". got {direction}.'
assert isinstance(max_shear_magnitude, float), 'max_shear_magnitude ' \
f'should be type float. got {type(max_shear_magnitude)}.'
assert 0. <= max_shear_magnitude <= 1., 'Defaultly ' \
'max_shear_magnitude should be in range [0,1]. ' \
f'got {max_shear_magnitude}.'
self.level = level
self.magnitude = level_to_value(level, max_shear_magnitude)
self.img_fill_val = img_fill_val
self.seg_ignore_label = seg_ignore_label
self.prob = prob
self.direction = direction
self.max_shear_magnitude = max_shear_magnitude
self.random_negative_prob = random_negative_prob
self.interpolation = interpolation
def _shear_img(self,
results,
magnitude,
direction='horizontal',
interpolation='bilinear'):
"""Shear the image.
Args:
results (dict): Result dict from loading pipeline.
magnitude (int | float): The magnitude used for shear.
direction (str): The direction for shear, either "horizontal"
or "vertical".
interpolation (str): Same as in :func:`mmcv.imshear`.
"""
for key in results.get('img_fields', ['img']):
img = results[key]
img_sheared = mmcv.imshear(
img,
magnitude,
direction,
border_value=self.img_fill_val,
interpolation=interpolation)
results[key] = img_sheared.astype(img.dtype)
def _shear_bboxes(self, results, magnitude):
"""Shear the bboxes."""
h, w, c = results['img_shape']
if self.direction == 'horizontal':
shear_matrix = np.stack([[1, magnitude],
[0, 1]]).astype(np.float32) # [2, 2]
else:
shear_matrix = np.stack([[1, 0], [magnitude,
1]]).astype(np.float32)
for key in results.get('bbox_fields', []):
min_x, min_y, max_x, max_y = np.split(
results[key], results[key].shape[-1], axis=-1)
coordinates = np.stack([[min_x, min_y], [max_x, min_y],
[min_x, max_y],
[max_x, max_y]]) # [4, 2, nb_box, 1]
coordinates = coordinates[..., 0].transpose(
(2, 1, 0)).astype(np.float32) # [nb_box, 2, 4]
new_coords = np.matmul(shear_matrix[None, :, :],
coordinates) # [nb_box, 2, 4]
min_x = np.min(new_coords[:, 0, :], axis=-1)
min_y = np.min(new_coords[:, 1, :], axis=-1)
max_x = np.max(new_coords[:, 0, :], axis=-1)
max_y = np.max(new_coords[:, 1, :], axis=-1)
min_x = np.clip(min_x, a_min=0, a_max=w)
min_y = np.clip(min_y, a_min=0, a_max=h)
max_x = np.clip(max_x, a_min=min_x, a_max=w)
max_y = np.clip(max_y, a_min=min_y, a_max=h)
results[key] = np.stack([min_x, min_y, max_x, max_y],
axis=-1).astype(results[key].dtype)
def _shear_masks(self,
results,
magnitude,
direction='horizontal',
fill_val=0,
interpolation='bilinear'):
"""Shear the masks."""
h, w, c = results['img_shape']
for key in results.get('mask_fields', []):
masks = results[key]
results[key] = masks.shear((h, w),
magnitude,
direction,
border_value=fill_val,
interpolation=interpolation)
def _shear_seg(self,
results,
magnitude,
direction='horizontal',
fill_val=255,
interpolation='bilinear'):
"""Shear the segmentation maps."""
for key in results.get('seg_fields', []):
seg = results[key]
results[key] = mmcv.imshear(
seg,
magnitude,
direction,
border_value=fill_val,
interpolation=interpolation).astype(seg.dtype)
def _filter_invalid(self, results, min_bbox_size=0):
"""Filter bboxes and corresponding masks too small after shear
augmentation."""
bbox2label, bbox2mask, _ = bbox2fields()
for key in results.get('bbox_fields', []):
bbox_w = results[key][:, 2] - results[key][:, 0]
bbox_h = results[key][:, 3] - results[key][:, 1]
valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size)
valid_inds = np.nonzero(valid_inds)[0]
results[key] = results[key][valid_inds]
# label fields. e.g. gt_labels and gt_labels_ignore
label_key = bbox2label.get(key)
if label_key in results:
results[label_key] = results[label_key][valid_inds]
# mask fields, e.g. gt_masks and gt_masks_ignore
mask_key = bbox2mask.get(key)
if mask_key in results:
results[mask_key] = results[mask_key][valid_inds]
def __call__(self, results):
"""Call function to shear images, bounding boxes, masks and semantic
segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Sheared results.
"""
if np.random.rand() > self.prob:
return results
magnitude = random_negative(self.magnitude, self.random_negative_prob)
self._shear_img(results, magnitude, self.direction, self.interpolation)
self._shear_bboxes(results, magnitude)
# fill_val set to 0 for background of mask.
self._shear_masks(
results,
magnitude,
self.direction,
fill_val=0,
interpolation=self.interpolation)
self._shear_seg(
results,
magnitude,
self.direction,
fill_val=self.seg_ignore_label,
interpolation=self.interpolation)
self._filter_invalid(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(level={self.level}, '
repr_str += f'img_fill_val={self.img_fill_val}, '
repr_str += f'seg_ignore_label={self.seg_ignore_label}, '
repr_str += f'prob={self.prob}, '
repr_str += f'direction={self.direction}, '
repr_str += f'max_shear_magnitude={self.max_shear_magnitude}, '
repr_str += f'random_negative_prob={self.random_negative_prob}, '
repr_str += f'interpolation={self.interpolation})'
return repr_str
@PIPELINES.register_module()
class Rotate(object):
"""Apply Rotate Transformation to image (and its corresponding bbox, mask,
segmentation).
Args:
level (int | float): The level should be in range (0,_MAX_LEVEL].
scale (int | float): Isotropic scale factor. Same in
``mmcv.imrotate``.
center (int | float | tuple[float]): Center point (w, h) of the
rotation in the source image. If None, the center of the
image will be used. Same in ``mmcv.imrotate``.
img_fill_val (int | float | tuple): The fill value for image border.
If float, the same value will be used for all the three
channels of image. If tuple, the should be 3 elements (e.g.
equals the number of channels for image).
seg_ignore_label (int): The fill value used for segmentation map.
Note this value must equals ``ignore_label`` in ``semantic_head``
of the corresponding config. Default 255.
prob (float): The probability for perform transformation and
should be in range 0 to 1.
max_rotate_angle (int | float): The maximum angles for rotate
transformation.
random_negative_prob (float): The probability that turns the
offset negative.
"""
def __init__(self,
level,
scale=1,
center=None,
img_fill_val=128,
seg_ignore_label=255,
prob=0.5,
max_rotate_angle=30,
random_negative_prob=0.5):
assert isinstance(level, (int, float)), \
f'The level must be type int or float. got {type(level)}.'
assert 0 <= level <= _MAX_LEVEL, \
f'The level should be in range (0,{_MAX_LEVEL}]. got {level}.'
assert isinstance(scale, (int, float)), \
f'The scale must be type int or float. got type {type(scale)}.'
if isinstance(center, (int, float)):
center = (center, center)
elif isinstance(center, tuple):
assert len(center) == 2, 'center with type tuple must have '\
f'2 elements. got {len(center)} elements.'
else:
assert center is None, 'center must be None or type int, '\
f'float or tuple, got type {type(center)}.'
if isinstance(img_fill_val, (float, int)):
img_fill_val = tuple([float(img_fill_val)] * 3)
elif isinstance(img_fill_val, tuple):
assert len(img_fill_val) == 3, 'img_fill_val as tuple must '\
f'have 3 elements. got {len(img_fill_val)}.'
img_fill_val = tuple([float(val) for val in img_fill_val])
else:
raise ValueError(
'img_fill_val must be float or tuple with 3 elements.')
assert np.all([0 <= val <= 255 for val in img_fill_val]), \
'all elements of img_fill_val should between range [0,255]. '\
f'got {img_fill_val}.'
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\
'got {prob}.'
assert isinstance(max_rotate_angle, (int, float)), 'max_rotate_angle '\
f'should be type int or float. got type {type(max_rotate_angle)}.'
self.level = level
self.scale = scale
# Rotation angle in degrees. Positive values mean
# clockwise rotation.
self.angle = level_to_value(level, max_rotate_angle)
self.center = center
self.img_fill_val = img_fill_val
self.seg_ignore_label = seg_ignore_label
self.prob = prob
self.max_rotate_angle = max_rotate_angle
self.random_negative_prob = random_negative_prob
def _rotate_img(self, results, angle, center=None, scale=1.0):
"""Rotate the image.
Args:
results (dict): Result dict from loading pipeline.
angle (float): Rotation angle in degrees, positive values
mean clockwise rotation. Same in ``mmcv.imrotate``.
center (tuple[float], optional): Center point (w, h) of the
rotation. Same in ``mmcv.imrotate``.
scale (int | float): Isotropic scale factor. Same in
``mmcv.imrotate``.
"""
for key in results.get('img_fields', ['img']):
img = results[key].copy()
img_rotated = mmcv.imrotate(
img, angle, center, scale, border_value=self.img_fill_val)
results[key] = img_rotated.astype(img.dtype)
def _rotate_bboxes(self, results, rotate_matrix):
"""Rotate the bboxes."""
h, w, c = results['img_shape']
for key in results.get('bbox_fields', []):
min_x, min_y, max_x, max_y = np.split(
results[key], results[key].shape[-1], axis=-1)
coordinates = np.stack([[min_x, min_y], [max_x, min_y],
[min_x, max_y],
[max_x, max_y]]) # [4, 2, nb_bbox, 1]
# pad 1 to convert from format [x, y] to homogeneous
# coordinates format [x, y, 1]
coordinates = np.concatenate(
(coordinates,
np.ones((4, 1, coordinates.shape[2], 1), coordinates.dtype)),
axis=1) # [4, 3, nb_bbox, 1]
coordinates = coordinates.transpose(
(2, 0, 1, 3)) # [nb_bbox, 4, 3, 1]
rotated_coords = np.matmul(rotate_matrix,
coordinates) # [nb_bbox, 4, 2, 1]
rotated_coords = rotated_coords[..., 0] # [nb_bbox, 4, 2]
min_x, min_y = np.min(
rotated_coords[:, :, 0], axis=1), np.min(
rotated_coords[:, :, 1], axis=1)
max_x, max_y = np.max(
rotated_coords[:, :, 0], axis=1), np.max(
rotated_coords[:, :, 1], axis=1)
min_x, min_y = np.clip(
min_x, a_min=0, a_max=w), np.clip(
min_y, a_min=0, a_max=h)
max_x, max_y = np.clip(
max_x, a_min=min_x, a_max=w), np.clip(
max_y, a_min=min_y, a_max=h)
results[key] = np.stack([min_x, min_y, max_x, max_y],
axis=-1).astype(results[key].dtype)
def _rotate_masks(self,
results,
angle,
center=None,
scale=1.0,
fill_val=0):
"""Rotate the masks."""
h, w, c = results['img_shape']
for key in results.get('mask_fields', []):
masks = results[key]
results[key] = masks.rotate((h, w), angle, center, scale, fill_val)
def _rotate_seg(self,
results,
angle,
center=None,
scale=1.0,
fill_val=255):
"""Rotate the segmentation map."""
for key in results.get('seg_fields', []):
seg = results[key].copy()
results[key] = mmcv.imrotate(
seg, angle, center, scale,
border_value=fill_val).astype(seg.dtype)
def _filter_invalid(self, results, min_bbox_size=0):
"""Filter bboxes and corresponding masks too small after rotate
augmentation."""
bbox2label, bbox2mask, _ = bbox2fields()
for key in results.get('bbox_fields', []):
bbox_w = results[key][:, 2] - results[key][:, 0]
bbox_h = results[key][:, 3] - results[key][:, 1]
valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size)
valid_inds = np.nonzero(valid_inds)[0]
results[key] = results[key][valid_inds]
# label fields. e.g. gt_labels and gt_labels_ignore
label_key = bbox2label.get(key)
if label_key in results:
results[label_key] = results[label_key][valid_inds]
# mask fields, e.g. gt_masks and gt_masks_ignore
mask_key = bbox2mask.get(key)
if mask_key in results:
results[mask_key] = results[mask_key][valid_inds]
def __call__(self, results):
"""Call function to rotate images, bounding boxes, masks and semantic
segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Rotated results.
"""
if np.random.rand() > self.prob:
return results
h, w = results['img'].shape[:2]
center = self.center
if center is None:
center = ((w - 1) * 0.5, (h - 1) * 0.5)
angle = random_negative(self.angle, self.random_negative_prob)
self._rotate_img(results, angle, center, self.scale)
rotate_matrix = cv2.getRotationMatrix2D(center, -angle, self.scale)
self._rotate_bboxes(results, rotate_matrix)
self._rotate_masks(results, angle, center, self.scale, fill_val=0)
self._rotate_seg(
results, angle, center, self.scale, fill_val=self.seg_ignore_label)
self._filter_invalid(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(level={self.level}, '
repr_str += f'scale={self.scale}, '
repr_str += f'center={self.center}, '
repr_str += f'img_fill_val={self.img_fill_val}, '
repr_str += f'seg_ignore_label={self.seg_ignore_label}, '
repr_str += f'prob={self.prob}, '
repr_str += f'max_rotate_angle={self.max_rotate_angle}, '
repr_str += f'random_negative_prob={self.random_negative_prob})'
return repr_str
@PIPELINES.register_module()
class Translate(object):
"""Translate the images, bboxes, masks and segmentation maps horizontally
or vertically.
Args:
level (int | float): The level for Translate and should be in
range [0,_MAX_LEVEL].
prob (float): The probability for performing translation and
should be in range [0, 1].
img_fill_val (int | float | tuple): The filled value for image
border. If float, the same fill value will be used for all
the three channels of image. If tuple, the should be 3
elements (e.g. equals the number of channels for image).
seg_ignore_label (int): The fill value used for segmentation map.
Note this value must equals ``ignore_label`` in ``semantic_head``
of the corresponding config. Default 255.
direction (str): The translate direction, either "horizontal"
or "vertical".
max_translate_offset (int | float): The maximum pixel's offset for
Translate.
random_negative_prob (float): The probability that turns the
offset negative.
min_size (int | float): The minimum pixel for filtering
invalid bboxes after the translation.
"""
def __init__(self,
level,
prob=0.5,
img_fill_val=128,
seg_ignore_label=255,
direction='horizontal',
max_translate_offset=250.,
random_negative_prob=0.5,
min_size=0):
assert isinstance(level, (int, float)), \
'The level must be type int or float.'
assert 0 <= level <= _MAX_LEVEL, \
'The level used for calculating Translate\'s offset should be ' \
'in range [0,_MAX_LEVEL]'
assert 0 <= prob <= 1.0, \
'The probability of translation should be in range [0, 1].'
if isinstance(img_fill_val, (float, int)):
img_fill_val = tuple([float(img_fill_val)] * 3)
elif isinstance(img_fill_val, tuple):
assert len(img_fill_val) == 3, \
'img_fill_val as tuple must have 3 elements.'
img_fill_val = tuple([float(val) for val in img_fill_val])
else:
raise ValueError('img_fill_val must be type float or tuple.')
assert np.all([0 <= val <= 255 for val in img_fill_val]), \
'all elements of img_fill_val should between range [0,255].'
assert direction in ('horizontal', 'vertical'), \
'direction should be "horizontal" or "vertical".'
assert isinstance(max_translate_offset, (int, float)), \
'The max_translate_offset must be type int or float.'
# the offset used for translation
self.offset = int(level_to_value(level, max_translate_offset))
self.level = level
self.prob = prob
self.img_fill_val = img_fill_val
self.seg_ignore_label = seg_ignore_label
self.direction = direction
self.max_translate_offset = max_translate_offset
self.random_negative_prob = random_negative_prob
self.min_size = min_size
def _translate_img(self, results, offset, direction='horizontal'):
"""Translate the image.
Args:
results (dict): Result dict from loading pipeline.
offset (int | float): The offset for translate.
direction (str): The translate direction, either "horizontal"
or "vertical".
"""
for key in results.get('img_fields', ['img']):
img = results[key].copy()
results[key] = mmcv.imtranslate(
img, offset, direction, self.img_fill_val).astype(img.dtype)
def _translate_bboxes(self, results, offset):
"""Shift bboxes horizontally or vertically, according to offset."""
h, w, c = results['img_shape']
for key in results.get('bbox_fields', []):
min_x, min_y, max_x, max_y = np.split(
results[key], results[key].shape[-1], axis=-1)
if self.direction == 'horizontal':
min_x = np.maximum(0, min_x + offset)
max_x = np.minimum(w, max_x + offset)
elif self.direction == 'vertical':
min_y = np.maximum(0, min_y + offset)
max_y = np.minimum(h, max_y + offset)
# the boxes translated outside of image will be filtered along with
# the corresponding masks, by invoking ``_filter_invalid``.
results[key] = np.concatenate([min_x, min_y, max_x, max_y],
axis=-1)
def _translate_masks(self,
results,
offset,
direction='horizontal',
fill_val=0):
"""Translate masks horizontally or vertically."""
h, w, c = results['img_shape']
for key in results.get('mask_fields', []):
masks = results[key]
results[key] = masks.translate((h, w), offset, direction, fill_val)
def _translate_seg(self,
results,
offset,
direction='horizontal',
fill_val=255):
"""Translate segmentation maps horizontally or vertically."""
for key in results.get('seg_fields', []):
seg = results[key].copy()
results[key] = mmcv.imtranslate(seg, offset, direction,
fill_val).astype(seg.dtype)
def _filter_invalid(self, results, min_size=0):
"""Filter bboxes and masks too small or translated out of image."""
bbox2label, bbox2mask, _ = bbox2fields()
for key in results.get('bbox_fields', []):
bbox_w = results[key][:, 2] - results[key][:, 0]
bbox_h = results[key][:, 3] - results[key][:, 1]
valid_inds = (bbox_w > min_size) & (bbox_h > min_size)
valid_inds = np.nonzero(valid_inds)[0]
results[key] = results[key][valid_inds]
# label fields. e.g. gt_labels and gt_labels_ignore
label_key = bbox2label.get(key)
if label_key in results:
results[label_key] = results[label_key][valid_inds]
# mask fields, e.g. gt_masks and gt_masks_ignore
mask_key = bbox2mask.get(key)
if mask_key in results:
results[mask_key] = results[mask_key][valid_inds]
return results
def __call__(self, results):
"""Call function to translate images, bounding boxes, masks and
semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Translated results.
"""
if np.random.rand() > self.prob:
return results
offset = random_negative(self.offset, self.random_negative_prob)
self._translate_img(results, offset, self.direction)
self._translate_bboxes(results, offset)
# fill_val defaultly 0 for BitmapMasks and None for PolygonMasks.
self._translate_masks(results, offset, self.direction)
# fill_val set to ``seg_ignore_label`` for the ignored value
# of segmentation map.
self._translate_seg(
results, offset, self.direction, fill_val=self.seg_ignore_label)
self._filter_invalid(results, min_size=self.min_size)
return results
@PIPELINES.register_module()
class ColorTransform(object):
"""Apply Color transformation to image. The bboxes, masks, and
segmentations are not modified.
Args:
level (int | float): Should be in range [0,_MAX_LEVEL].
prob (float): The probability for performing Color transformation.
"""
def __init__(self, level, prob=0.5):
assert isinstance(level, (int, float)), \
'The level must be type int or float.'
assert 0 <= level <= _MAX_LEVEL, \
'The level should be in range [0,_MAX_LEVEL].'
assert 0 <= prob <= 1.0, \
'The probability should be in range [0,1].'
self.level = level
self.prob = prob
self.factor = enhance_level_to_value(level)
def _adjust_color_img(self, results, factor=1.0):
"""Apply Color transformation to image."""
for key in results.get('img_fields', ['img']):
# NOTE defaultly the image should be BGR format
img = results[key]
results[key] = mmcv.adjust_color(img, factor).astype(img.dtype)
def __call__(self, results):
"""Call function for Color transformation.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Colored results.
"""
if np.random.rand() > self.prob:
return results
self._adjust_color_img(results, self.factor)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(level={self.level}, '
repr_str += f'prob={self.prob})'
return repr_str
@PIPELINES.register_module()
class EqualizeTransform(object):
"""Apply Equalize transformation to image. The bboxes, masks and
segmentations are not modified.
Args:
prob (float): The probability for performing Equalize transformation.
"""
def __init__(self, prob=0.5):
assert 0 <= prob <= 1.0, \
'The probability should be in range [0,1].'
self.prob = prob
def _imequalize(self, results):
"""Equalizes the histogram of one image."""
for key in results.get('img_fields', ['img']):
img = results[key]
results[key] = mmcv.imequalize(img).astype(img.dtype)
def __call__(self, results):
"""Call function for Equalize transformation.
Args:
results (dict): Results dict from loading pipeline.
Returns:
dict: Results after the transformation.
"""
if np.random.rand() > self.prob:
return results
self._imequalize(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob})'
@PIPELINES.register_module()
class BrightnessTransform(object):
"""Apply Brightness transformation to image. The bboxes, masks and
segmentations are not modified.
Args:
level (int | float): Should be in range [0,_MAX_LEVEL].
prob (float): The probability for performing Brightness transformation.
"""
def __init__(self, level, prob=0.5):
assert isinstance(level, (int, float)), \
'The level must be type int or float.'
assert 0 <= level <= _MAX_LEVEL, \
'The level should be in range [0,_MAX_LEVEL].'
assert 0 <= prob <= 1.0, \
'The probability should be in range [0,1].'
self.level = level
self.prob = prob
self.factor = enhance_level_to_value(level)
def _adjust_brightness_img(self, results, factor=1.0):
"""Adjust the brightness of image."""
for key in results.get('img_fields', ['img']):
img = results[key]
results[key] = mmcv.adjust_brightness(img,
factor).astype(img.dtype)
def __call__(self, results):
"""Call function for Brightness transformation.
Args:
results (dict): Results dict from loading pipeline.
Returns:
dict: Results after the transformation.
"""
if np.random.rand() > self.prob:
return results
self._adjust_brightness_img(results, self.factor)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(level={self.level}, '
repr_str += f'prob={self.prob})'
return repr_str
@PIPELINES.register_module()
class ContrastTransform(object):
"""Apply Contrast transformation to image. The bboxes, masks and
segmentations are not modified.
Args:
level (int | float): Should be in range [0,_MAX_LEVEL].
prob (float): The probability for performing Contrast transformation.
"""
def __init__(self, level, prob=0.5):
assert isinstance(level, (int, float)), \
'The level must be type int or float.'
assert 0 <= level <= _MAX_LEVEL, \
'The level should be in range [0,_MAX_LEVEL].'
assert 0 <= prob <= 1.0, \
'The probability should be in range [0,1].'
self.level = level
self.prob = prob
self.factor = enhance_level_to_value(level)
def _adjust_contrast_img(self, results, factor=1.0):
"""Adjust the image contrast."""
for key in results.get('img_fields', ['img']):
img = results[key]
results[key] = mmcv.adjust_contrast(img, factor).astype(img.dtype)
def __call__(self, results):
"""Call function for Contrast transformation.
Args:
results (dict): Results dict from loading pipeline.
Returns:
dict: Results after the transformation.
"""
if np.random.rand() > self.prob:
return results
self._adjust_contrast_img(results, self.factor)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(level={self.level}, '
repr_str += f'prob={self.prob})'
return repr_str
|