File size: 20,846 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import os.path as osp
import warnings
from abc import ABCMeta, abstractmethod

import torch
from torch.optim import Optimizer

import annotator.uniformer.mmcv as mmcv
from ..parallel import is_module_wrapper
from .checkpoint import load_checkpoint
from .dist_utils import get_dist_info
from .hooks import HOOKS, Hook
from .log_buffer import LogBuffer
from .priority import Priority, get_priority
from .utils import get_time_str


class BaseRunner(metaclass=ABCMeta):
    """The base class of Runner, a training helper for PyTorch.

    All subclasses should implement the following APIs:

    - ``run()``
    - ``train()``
    - ``val()``
    - ``save_checkpoint()``

    Args:
        model (:obj:`torch.nn.Module`): The model to be run.
        batch_processor (callable): A callable method that process a data
            batch. The interface of this method should be
            `batch_processor(model, data, train_mode) -> dict`
        optimizer (dict or :obj:`torch.optim.Optimizer`): It can be either an
            optimizer (in most cases) or a dict of optimizers (in models that
            requires more than one optimizer, e.g., GAN).
        work_dir (str, optional): The working directory to save checkpoints
            and logs. Defaults to None.
        logger (:obj:`logging.Logger`): Logger used during training.
             Defaults to None. (The default value is just for backward
             compatibility)
        meta (dict | None): A dict records some import information such as
            environment info and seed, which will be logged in logger hook.
            Defaults to None.
        max_epochs (int, optional): Total training epochs.
        max_iters (int, optional): Total training iterations.
    """

    def __init__(self,
                 model,
                 batch_processor=None,
                 optimizer=None,
                 work_dir=None,
                 logger=None,
                 meta=None,
                 max_iters=None,
                 max_epochs=None):
        if batch_processor is not None:
            if not callable(batch_processor):
                raise TypeError('batch_processor must be callable, '
                                f'but got {type(batch_processor)}')
            warnings.warn('batch_processor is deprecated, please implement '
                          'train_step() and val_step() in the model instead.')
            # raise an error is `batch_processor` is not None and
            # `model.train_step()` exists.
            if is_module_wrapper(model):
                _model = model.module
            else:
                _model = model
            if hasattr(_model, 'train_step') or hasattr(_model, 'val_step'):
                raise RuntimeError(
                    'batch_processor and model.train_step()/model.val_step() '
                    'cannot be both available.')
        else:
            assert hasattr(model, 'train_step')

        # check the type of `optimizer`
        if isinstance(optimizer, dict):
            for name, optim in optimizer.items():
                if not isinstance(optim, Optimizer):
                    raise TypeError(
                        f'optimizer must be a dict of torch.optim.Optimizers, '
                        f'but optimizer["{name}"] is a {type(optim)}')
        elif not isinstance(optimizer, Optimizer) and optimizer is not None:
            raise TypeError(
                f'optimizer must be a torch.optim.Optimizer object '
                f'or dict or None, but got {type(optimizer)}')

        # check the type of `logger`
        if not isinstance(logger, logging.Logger):
            raise TypeError(f'logger must be a logging.Logger object, '
                            f'but got {type(logger)}')

        # check the type of `meta`
        if meta is not None and not isinstance(meta, dict):
            raise TypeError(
                f'meta must be a dict or None, but got {type(meta)}')

        self.model = model
        self.batch_processor = batch_processor
        self.optimizer = optimizer
        self.logger = logger
        self.meta = meta
        # create work_dir
        if mmcv.is_str(work_dir):
            self.work_dir = osp.abspath(work_dir)
            mmcv.mkdir_or_exist(self.work_dir)
        elif work_dir is None:
            self.work_dir = None
        else:
            raise TypeError('"work_dir" must be a str or None')

        # get model name from the model class
        if hasattr(self.model, 'module'):
            self._model_name = self.model.module.__class__.__name__
        else:
            self._model_name = self.model.__class__.__name__

        self._rank, self._world_size = get_dist_info()
        self.timestamp = get_time_str()
        self.mode = None
        self._hooks = []
        self._epoch = 0
        self._iter = 0
        self._inner_iter = 0

        if max_epochs is not None and max_iters is not None:
            raise ValueError(
                'Only one of `max_epochs` or `max_iters` can be set.')

        self._max_epochs = max_epochs
        self._max_iters = max_iters
        # TODO: Redesign LogBuffer, it is not flexible and elegant enough
        self.log_buffer = LogBuffer()

    @property
    def model_name(self):
        """str: Name of the model, usually the module class name."""
        return self._model_name

    @property
    def rank(self):
        """int: Rank of current process. (distributed training)"""
        return self._rank

    @property
    def world_size(self):
        """int: Number of processes participating in the job.
        (distributed training)"""
        return self._world_size

    @property
    def hooks(self):
        """list[:obj:`Hook`]: A list of registered hooks."""
        return self._hooks

    @property
    def epoch(self):
        """int: Current epoch."""
        return self._epoch

    @property
    def iter(self):
        """int: Current iteration."""
        return self._iter

    @property
    def inner_iter(self):
        """int: Iteration in an epoch."""
        return self._inner_iter

    @property
    def max_epochs(self):
        """int: Maximum training epochs."""
        return self._max_epochs

    @property
    def max_iters(self):
        """int: Maximum training iterations."""
        return self._max_iters

    @abstractmethod
    def train(self):
        pass

    @abstractmethod
    def val(self):
        pass

    @abstractmethod
    def run(self, data_loaders, workflow, **kwargs):
        pass

    @abstractmethod
    def save_checkpoint(self,
                        out_dir,
                        filename_tmpl,
                        save_optimizer=True,
                        meta=None,
                        create_symlink=True):
        pass

    def current_lr(self):
        """Get current learning rates.

        Returns:
            list[float] | dict[str, list[float]]: Current learning rates of all
                param groups. If the runner has a dict of optimizers, this
                method will return a dict.
        """
        if isinstance(self.optimizer, torch.optim.Optimizer):
            lr = [group['lr'] for group in self.optimizer.param_groups]
        elif isinstance(self.optimizer, dict):
            lr = dict()
            for name, optim in self.optimizer.items():
                lr[name] = [group['lr'] for group in optim.param_groups]
        else:
            raise RuntimeError(
                'lr is not applicable because optimizer does not exist.')
        return lr

    def current_momentum(self):
        """Get current momentums.

        Returns:
            list[float] | dict[str, list[float]]: Current momentums of all
                param groups. If the runner has a dict of optimizers, this
                method will return a dict.
        """

        def _get_momentum(optimizer):
            momentums = []
            for group in optimizer.param_groups:
                if 'momentum' in group.keys():
                    momentums.append(group['momentum'])
                elif 'betas' in group.keys():
                    momentums.append(group['betas'][0])
                else:
                    momentums.append(0)
            return momentums

        if self.optimizer is None:
            raise RuntimeError(
                'momentum is not applicable because optimizer does not exist.')
        elif isinstance(self.optimizer, torch.optim.Optimizer):
            momentums = _get_momentum(self.optimizer)
        elif isinstance(self.optimizer, dict):
            momentums = dict()
            for name, optim in self.optimizer.items():
                momentums[name] = _get_momentum(optim)
        return momentums

    def register_hook(self, hook, priority='NORMAL'):
        """Register a hook into the hook list.

        The hook will be inserted into a priority queue, with the specified
        priority (See :class:`Priority` for details of priorities).
        For hooks with the same priority, they will be triggered in the same
        order as they are registered.

        Args:
            hook (:obj:`Hook`): The hook to be registered.
            priority (int or str or :obj:`Priority`): Hook priority.
                Lower value means higher priority.
        """
        assert isinstance(hook, Hook)
        if hasattr(hook, 'priority'):
            raise ValueError('"priority" is a reserved attribute for hooks')
        priority = get_priority(priority)
        hook.priority = priority
        # insert the hook to a sorted list
        inserted = False
        for i in range(len(self._hooks) - 1, -1, -1):
            if priority >= self._hooks[i].priority:
                self._hooks.insert(i + 1, hook)
                inserted = True
                break
        if not inserted:
            self._hooks.insert(0, hook)

    def register_hook_from_cfg(self, hook_cfg):
        """Register a hook from its cfg.

        Args:
            hook_cfg (dict): Hook config. It should have at least keys 'type'
              and 'priority' indicating its type and priority.

        Notes:
            The specific hook class to register should not use 'type' and
            'priority' arguments during initialization.
        """
        hook_cfg = hook_cfg.copy()
        priority = hook_cfg.pop('priority', 'NORMAL')
        hook = mmcv.build_from_cfg(hook_cfg, HOOKS)
        self.register_hook(hook, priority=priority)

    def call_hook(self, fn_name):
        """Call all hooks.

        Args:
            fn_name (str): The function name in each hook to be called, such as
                "before_train_epoch".
        """
        for hook in self._hooks:
            getattr(hook, fn_name)(self)

    def get_hook_info(self):
        # Get hooks info in each stage
        stage_hook_map = {stage: [] for stage in Hook.stages}
        for hook in self.hooks:
            try:
                priority = Priority(hook.priority).name
            except ValueError:
                priority = hook.priority
            classname = hook.__class__.__name__
            hook_info = f'({priority:<12}) {classname:<35}'
            for trigger_stage in hook.get_triggered_stages():
                stage_hook_map[trigger_stage].append(hook_info)

        stage_hook_infos = []
        for stage in Hook.stages:
            hook_infos = stage_hook_map[stage]
            if len(hook_infos) > 0:
                info = f'{stage}:\n'
                info += '\n'.join(hook_infos)
                info += '\n -------------------- '
                stage_hook_infos.append(info)
        return '\n'.join(stage_hook_infos)

    def load_checkpoint(self,
                        filename,
                        map_location='cpu',
                        strict=False,
                        revise_keys=[(r'^module.', '')]):
        return load_checkpoint(
            self.model,
            filename,
            map_location,
            strict,
            self.logger,
            revise_keys=revise_keys)

    def resume(self,
               checkpoint,
               resume_optimizer=True,
               map_location='default'):
        if map_location == 'default':
            if torch.cuda.is_available():
                device_id = torch.cuda.current_device()
                checkpoint = self.load_checkpoint(
                    checkpoint,
                    map_location=lambda storage, loc: storage.cuda(device_id))
            else:
                checkpoint = self.load_checkpoint(checkpoint)
        else:
            checkpoint = self.load_checkpoint(
                checkpoint, map_location=map_location)

        self._epoch = checkpoint['meta']['epoch']
        self._iter = checkpoint['meta']['iter']
        if self.meta is None:
            self.meta = {}
        self.meta.setdefault('hook_msgs', {})
        # load `last_ckpt`, `best_score`, `best_ckpt`, etc. for hook messages
        self.meta['hook_msgs'].update(checkpoint['meta'].get('hook_msgs', {}))

        # Re-calculate the number of iterations when resuming
        # models with different number of GPUs
        if 'config' in checkpoint['meta']:
            config = mmcv.Config.fromstring(
                checkpoint['meta']['config'], file_format='.py')
            previous_gpu_ids = config.get('gpu_ids', None)
            if previous_gpu_ids and len(previous_gpu_ids) > 0 and len(
                    previous_gpu_ids) != self.world_size:
                self._iter = int(self._iter * len(previous_gpu_ids) /
                                 self.world_size)
                self.logger.info('the iteration number is changed due to '
                                 'change of GPU number')

        # resume meta information meta
        self.meta = checkpoint['meta']

        if 'optimizer' in checkpoint and resume_optimizer:
            if isinstance(self.optimizer, Optimizer):
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            elif isinstance(self.optimizer, dict):
                for k in self.optimizer.keys():
                    self.optimizer[k].load_state_dict(
                        checkpoint['optimizer'][k])
            else:
                raise TypeError(
                    'Optimizer should be dict or torch.optim.Optimizer '
                    f'but got {type(self.optimizer)}')

        self.logger.info('resumed epoch %d, iter %d', self.epoch, self.iter)

    def register_lr_hook(self, lr_config):
        if lr_config is None:
            return
        elif isinstance(lr_config, dict):
            assert 'policy' in lr_config
            policy_type = lr_config.pop('policy')
            # If the type of policy is all in lower case, e.g., 'cyclic',
            # then its first letter will be capitalized, e.g., to be 'Cyclic'.
            # This is for the convenient usage of Lr updater.
            # Since this is not applicable for `
            # CosineAnnealingLrUpdater`,
            # the string will not be changed if it contains capital letters.
            if policy_type == policy_type.lower():
                policy_type = policy_type.title()
            hook_type = policy_type + 'LrUpdaterHook'
            lr_config['type'] = hook_type
            hook = mmcv.build_from_cfg(lr_config, HOOKS)
        else:
            hook = lr_config
        self.register_hook(hook, priority='VERY_HIGH')

    def register_momentum_hook(self, momentum_config):
        if momentum_config is None:
            return
        if isinstance(momentum_config, dict):
            assert 'policy' in momentum_config
            policy_type = momentum_config.pop('policy')
            # If the type of policy is all in lower case, e.g., 'cyclic',
            # then its first letter will be capitalized, e.g., to be 'Cyclic'.
            # This is for the convenient usage of momentum updater.
            # Since this is not applicable for
            # `CosineAnnealingMomentumUpdater`,
            # the string will not be changed if it contains capital letters.
            if policy_type == policy_type.lower():
                policy_type = policy_type.title()
            hook_type = policy_type + 'MomentumUpdaterHook'
            momentum_config['type'] = hook_type
            hook = mmcv.build_from_cfg(momentum_config, HOOKS)
        else:
            hook = momentum_config
        self.register_hook(hook, priority='HIGH')

    def register_optimizer_hook(self, optimizer_config):
        if optimizer_config is None:
            return
        if isinstance(optimizer_config, dict):
            optimizer_config.setdefault('type', 'OptimizerHook')
            hook = mmcv.build_from_cfg(optimizer_config, HOOKS)
        else:
            hook = optimizer_config
        self.register_hook(hook, priority='ABOVE_NORMAL')

    def register_checkpoint_hook(self, checkpoint_config):
        if checkpoint_config is None:
            return
        if isinstance(checkpoint_config, dict):
            checkpoint_config.setdefault('type', 'CheckpointHook')
            hook = mmcv.build_from_cfg(checkpoint_config, HOOKS)
        else:
            hook = checkpoint_config
        self.register_hook(hook, priority='NORMAL')

    def register_logger_hooks(self, log_config):
        if log_config is None:
            return
        log_interval = log_config['interval']
        for info in log_config['hooks']:
            logger_hook = mmcv.build_from_cfg(
                info, HOOKS, default_args=dict(interval=log_interval))
            self.register_hook(logger_hook, priority='VERY_LOW')

    def register_timer_hook(self, timer_config):
        if timer_config is None:
            return
        if isinstance(timer_config, dict):
            timer_config_ = copy.deepcopy(timer_config)
            hook = mmcv.build_from_cfg(timer_config_, HOOKS)
        else:
            hook = timer_config
        self.register_hook(hook, priority='LOW')

    def register_custom_hooks(self, custom_config):
        if custom_config is None:
            return

        if not isinstance(custom_config, list):
            custom_config = [custom_config]

        for item in custom_config:
            if isinstance(item, dict):
                self.register_hook_from_cfg(item)
            else:
                self.register_hook(item, priority='NORMAL')

    def register_profiler_hook(self, profiler_config):
        if profiler_config is None:
            return
        if isinstance(profiler_config, dict):
            profiler_config.setdefault('type', 'ProfilerHook')
            hook = mmcv.build_from_cfg(profiler_config, HOOKS)
        else:
            hook = profiler_config
        self.register_hook(hook)

    def register_training_hooks(self,
                                lr_config,
                                optimizer_config=None,
                                checkpoint_config=None,
                                log_config=None,
                                momentum_config=None,
                                timer_config=dict(type='IterTimerHook'),
                                custom_hooks_config=None):
        """Register default and custom hooks for training.

        Default and custom hooks include:

        +----------------------+-------------------------+
        | Hooks                | Priority                |
        +======================+=========================+
        | LrUpdaterHook        | VERY_HIGH (10)          |
        +----------------------+-------------------------+
        | MomentumUpdaterHook  | HIGH (30)               |
        +----------------------+-------------------------+
        | OptimizerStepperHook | ABOVE_NORMAL (40)       |
        +----------------------+-------------------------+
        | CheckpointSaverHook  | NORMAL (50)             |
        +----------------------+-------------------------+
        | IterTimerHook        | LOW (70)                |
        +----------------------+-------------------------+
        | LoggerHook(s)        | VERY_LOW (90)           |
        +----------------------+-------------------------+
        | CustomHook(s)        | defaults to NORMAL (50) |
        +----------------------+-------------------------+

        If custom hooks have same priority with default hooks, custom hooks
        will be triggered after default hooks.
        """
        self.register_lr_hook(lr_config)
        self.register_momentum_hook(momentum_config)
        self.register_optimizer_hook(optimizer_config)
        self.register_checkpoint_hook(checkpoint_config)
        self.register_timer_hook(timer_config)
        self.register_logger_hooks(log_config)
        self.register_custom_hooks(custom_hooks_config)