File size: 5,403 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) OpenMMLab. All rights reserved.
from abc import abstractmethod

import torch
import torch.nn as nn
import torch.nn.functional as F

from ..cnn import ConvModule


class BaseMergeCell(nn.Module):
    """The basic class for cells used in NAS-FPN and NAS-FCOS.

    BaseMergeCell takes 2 inputs. After applying convolution
    on them, they are resized to the target size. Then,
    they go through binary_op, which depends on the type of cell.
    If with_out_conv is True, the result of output will go through
    another convolution layer.

    Args:
        in_channels (int): number of input channels in out_conv layer.
        out_channels (int): number of output channels in out_conv layer.
        with_out_conv (bool): Whether to use out_conv layer
        out_conv_cfg (dict): Config dict for convolution layer, which should
            contain "groups", "kernel_size", "padding", "bias" to build
            out_conv layer.
        out_norm_cfg (dict): Config dict for normalization layer in out_conv.
        out_conv_order (tuple): The order of conv/norm/activation layers in
            out_conv.
        with_input1_conv (bool): Whether to use convolution on input1.
        with_input2_conv (bool): Whether to use convolution on input2.
        input_conv_cfg (dict): Config dict for building input1_conv layer and
            input2_conv layer, which is expected to contain the type of
            convolution.
            Default: None, which means using conv2d.
        input_norm_cfg (dict): Config dict for normalization layer in
            input1_conv and input2_conv layer. Default: None.
        upsample_mode (str): Interpolation method used to resize the output
            of input1_conv and input2_conv to target size. Currently, we
            support ['nearest', 'bilinear']. Default: 'nearest'.
    """

    def __init__(self,
                 fused_channels=256,
                 out_channels=256,
                 with_out_conv=True,
                 out_conv_cfg=dict(
                     groups=1, kernel_size=3, padding=1, bias=True),
                 out_norm_cfg=None,
                 out_conv_order=('act', 'conv', 'norm'),
                 with_input1_conv=False,
                 with_input2_conv=False,
                 input_conv_cfg=None,
                 input_norm_cfg=None,
                 upsample_mode='nearest'):
        super(BaseMergeCell, self).__init__()
        assert upsample_mode in ['nearest', 'bilinear']
        self.with_out_conv = with_out_conv
        self.with_input1_conv = with_input1_conv
        self.with_input2_conv = with_input2_conv
        self.upsample_mode = upsample_mode

        if self.with_out_conv:
            self.out_conv = ConvModule(
                fused_channels,
                out_channels,
                **out_conv_cfg,
                norm_cfg=out_norm_cfg,
                order=out_conv_order)

        self.input1_conv = self._build_input_conv(
            out_channels, input_conv_cfg,
            input_norm_cfg) if with_input1_conv else nn.Sequential()
        self.input2_conv = self._build_input_conv(
            out_channels, input_conv_cfg,
            input_norm_cfg) if with_input2_conv else nn.Sequential()

    def _build_input_conv(self, channel, conv_cfg, norm_cfg):
        return ConvModule(
            channel,
            channel,
            3,
            padding=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            bias=True)

    @abstractmethod
    def _binary_op(self, x1, x2):
        pass

    def _resize(self, x, size):
        if x.shape[-2:] == size:
            return x
        elif x.shape[-2:] < size:
            return F.interpolate(x, size=size, mode=self.upsample_mode)
        else:
            assert x.shape[-2] % size[-2] == 0 and x.shape[-1] % size[-1] == 0
            kernel_size = x.shape[-1] // size[-1]
            x = F.max_pool2d(x, kernel_size=kernel_size, stride=kernel_size)
            return x

    def forward(self, x1, x2, out_size=None):
        assert x1.shape[:2] == x2.shape[:2]
        assert out_size is None or len(out_size) == 2
        if out_size is None:  # resize to larger one
            out_size = max(x1.size()[2:], x2.size()[2:])

        x1 = self.input1_conv(x1)
        x2 = self.input2_conv(x2)

        x1 = self._resize(x1, out_size)
        x2 = self._resize(x2, out_size)

        x = self._binary_op(x1, x2)
        if self.with_out_conv:
            x = self.out_conv(x)
        return x


class SumCell(BaseMergeCell):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(SumCell, self).__init__(in_channels, out_channels, **kwargs)

    def _binary_op(self, x1, x2):
        return x1 + x2


class ConcatCell(BaseMergeCell):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(ConcatCell, self).__init__(in_channels * 2, out_channels,
                                         **kwargs)

    def _binary_op(self, x1, x2):
        ret = torch.cat([x1, x2], dim=1)
        return ret


class GlobalPoolingCell(BaseMergeCell):

    def __init__(self, in_channels=None, out_channels=None, **kwargs):
        super().__init__(in_channels, out_channels, **kwargs)
        self.global_pool = nn.AdaptiveAvgPool2d((1, 1))

    def _binary_op(self, x1, x2):
        x2_att = self.global_pool(x2).sigmoid()
        return x2 + x2_att * x1