Spaces:
Runtime error
Runtime error
File size: 18,085 Bytes
b334e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
"""Modified from https://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/vision_transformer.py."""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from annotator.uniformer.mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer,
constant_init, kaiming_init, normal_init)
from annotator.uniformer.mmcv.runner import _load_checkpoint
from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm
from annotator.uniformer.mmseg.utils import get_root_logger
from ..builder import BACKBONES
from ..utils import DropPath, trunc_normal_
class Mlp(nn.Module):
"""MLP layer for Encoder block.
Args:
in_features(int): Input dimension for the first fully
connected layer.
hidden_features(int): Output dimension for the first fully
connected layer.
out_features(int): Output dementsion for the second fully
connected layer.
act_cfg(dict): Config dict for activation layer.
Default: dict(type='GELU').
drop(float): Drop rate for the dropout layer. Dropout rate has
to be between 0 and 1. Default: 0.
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_cfg=dict(type='GELU'),
drop=0.):
super(Mlp, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = Linear(in_features, hidden_features)
self.act = build_activation_layer(act_cfg)
self.fc2 = Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
"""Attention layer for Encoder block.
Args:
dim (int): Dimension for the input vector.
num_heads (int): Number of parallel attention heads.
qkv_bias (bool): Enable bias for qkv if True. Default: False.
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
attn_drop (float): Drop rate for attention output weights.
Default: 0.
proj_drop (float): Drop rate for output weights. Default: 0.
"""
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
b, n, c = x.shape
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads,
c // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
"""Implements encoder block with residual connection.
Args:
dim (int): The feature dimension.
num_heads (int): Number of parallel attention heads.
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop (float): Drop rate for mlp output weights. Default: 0.
attn_drop (float): Drop rate for attention output weights.
Default: 0.
proj_drop (float): Drop rate for attn layer output weights.
Default: 0.
drop_path (float): Drop rate for paths of model.
Default: 0.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN', requires_grad=True).
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
dim,
num_heads,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
proj_drop=0.,
drop_path=0.,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN', eps=1e-6),
with_cp=False):
super(Block, self).__init__()
self.with_cp = with_cp
_, self.norm1 = build_norm_layer(norm_cfg, dim)
self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop,
proj_drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
_, self.norm2 = build_norm_layer(norm_cfg, dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_cfg=act_cfg,
drop=drop)
def forward(self, x):
def _inner_forward(x):
out = x + self.drop_path(self.attn(self.norm1(x)))
out = out + self.drop_path(self.mlp(self.norm2(out)))
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
class PatchEmbed(nn.Module):
"""Image to Patch Embedding.
Args:
img_size (int | tuple): Input image size.
default: 224.
patch_size (int): Width and height for a patch.
default: 16.
in_channels (int): Input channels for images. Default: 3.
embed_dim (int): The embedding dimension. Default: 768.
"""
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
embed_dim=768):
super(PatchEmbed, self).__init__()
if isinstance(img_size, int):
self.img_size = (img_size, img_size)
elif isinstance(img_size, tuple):
self.img_size = img_size
else:
raise TypeError('img_size must be type of int or tuple')
h, w = self.img_size
self.patch_size = (patch_size, patch_size)
self.num_patches = (h // patch_size) * (w // patch_size)
self.proj = Conv2d(
in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
return self.proj(x).flatten(2).transpose(1, 2)
@BACKBONES.register_module()
class VisionTransformer(nn.Module):
"""Vision transformer backbone.
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale` - https://arxiv.org/abs/2010.11929
Args:
img_size (tuple): input image size. Default: (224, 224).
patch_size (int, tuple): patch size. Default: 16.
in_channels (int): number of input channels. Default: 3.
embed_dim (int): embedding dimension. Default: 768.
depth (int): depth of transformer. Default: 12.
num_heads (int): number of attention heads. Default: 12.
mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
Default: 4.
out_indices (list | tuple | int): Output from which stages.
Default: -1.
qkv_bias (bool): enable bias for qkv if True. Default: True.
qk_scale (float): override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): dropout rate. Default: 0.
attn_drop_rate (float): attention dropout rate. Default: 0.
drop_path_rate (float): Rate of DropPath. Default: 0.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN', eps=1e-6, requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='GELU').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Default: False.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Default: bicubic.
with_cls_token (bool): If concatenating class token into image tokens
as transformer input. Default: True.
with_cp (bool): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
"""
def __init__(self,
img_size=(224, 224),
patch_size=16,
in_channels=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
out_indices=11,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True),
act_cfg=dict(type='GELU'),
norm_eval=False,
final_norm=False,
with_cls_token=True,
interpolate_mode='bicubic',
with_cp=False):
super(VisionTransformer, self).__init__()
self.img_size = img_size
self.patch_size = patch_size
self.features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=embed_dim)
self.with_cls_token = with_cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if isinstance(out_indices, int):
self.out_indices = [out_indices]
elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
self.out_indices = out_indices
else:
raise TypeError('out_indices must be type of int, list or tuple')
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=dpr[i],
attn_drop=attn_drop_rate,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
with_cp=with_cp) for i in range(depth)
])
self.interpolate_mode = interpolate_mode
self.final_norm = final_norm
if final_norm:
_, self.norm = build_norm_layer(norm_cfg, embed_dim)
self.norm_eval = norm_eval
self.with_cp = with_cp
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = get_root_logger()
checkpoint = _load_checkpoint(pretrained, logger=logger)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
if 'pos_embed' in state_dict.keys():
if self.pos_embed.shape != state_dict['pos_embed'].shape:
logger.info(msg=f'Resize the pos_embed shape from \
{state_dict["pos_embed"].shape} to {self.pos_embed.shape}')
h, w = self.img_size
pos_size = int(
math.sqrt(state_dict['pos_embed'].shape[1] - 1))
state_dict['pos_embed'] = self.resize_pos_embed(
state_dict['pos_embed'], (h, w), (pos_size, pos_size),
self.patch_size, self.interpolate_mode)
self.load_state_dict(state_dict, False)
elif pretrained is None:
# We only implement the 'jax_impl' initialization implemented at
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
for n, m in self.named_modules():
if isinstance(m, Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
if 'mlp' in n:
normal_init(m.bias, std=1e-6)
else:
constant_init(m.bias, 0)
elif isinstance(m, Conv2d):
kaiming_init(m.weight, mode='fan_in')
if m.bias is not None:
constant_init(m.bias, 0)
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
constant_init(m.bias, 0)
constant_init(m.weight, 1.0)
else:
raise TypeError('pretrained must be a str or None')
def _pos_embeding(self, img, patched_img, pos_embed):
"""Positiong embeding method.
Resize the pos_embed, if the input image size doesn't match
the training size.
Args:
img (torch.Tensor): The inference image tensor, the shape
must be [B, C, H, W].
patched_img (torch.Tensor): The patched image, it should be
shape of [B, L1, C].
pos_embed (torch.Tensor): The pos_embed weighs, it should be
shape of [B, L2, c].
Return:
torch.Tensor: The pos encoded image feature.
"""
assert patched_img.ndim == 3 and pos_embed.ndim == 3, \
'the shapes of patched_img and pos_embed must be [B, L, C]'
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1]
if x_len != pos_len:
if pos_len == (self.img_size[0] // self.patch_size) * (
self.img_size[1] // self.patch_size) + 1:
pos_h = self.img_size[0] // self.patch_size
pos_w = self.img_size[1] // self.patch_size
else:
raise ValueError(
'Unexpected shape of pos_embed, got {}.'.format(
pos_embed.shape))
pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:],
(pos_h, pos_w), self.patch_size,
self.interpolate_mode)
return self.pos_drop(patched_img + pos_embed)
@staticmethod
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode):
"""Resize pos_embed weights.
Resize pos_embed using bicubic interpolate method.
Args:
pos_embed (torch.Tensor): pos_embed weights.
input_shpae (tuple): Tuple for (input_h, intput_w).
pos_shape (tuple): Tuple for (pos_h, pos_w).
patch_size (int): Patch size.
Return:
torch.Tensor: The resized pos_embed of shape [B, L_new, C]
"""
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
input_h, input_w = input_shpae
pos_h, pos_w = pos_shape
cls_token_weight = pos_embed[:, 0]
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
pos_embed_weight = pos_embed_weight.reshape(
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed_weight = F.interpolate(
pos_embed_weight,
size=[input_h // patch_size, input_w // patch_size],
align_corners=False,
mode=mode)
cls_token_weight = cls_token_weight.unsqueeze(1)
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
return pos_embed
def forward(self, inputs):
B = inputs.shape[0]
x = self.patch_embed(inputs)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self._pos_embeding(inputs, x, self.pos_embed)
if not self.with_cls_token:
# Remove class token for transformer input
x = x[:, 1:]
outs = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if i == len(self.blocks) - 1:
if self.final_norm:
x = self.norm(x)
if i in self.out_indices:
if self.with_cls_token:
# Remove class token and reshape token for decoder head
out = x[:, 1:]
else:
out = x
B, _, C = out.shape
out = out.reshape(B, inputs.shape[2] // self.patch_size,
inputs.shape[3] // self.patch_size,
C).permute(0, 3, 1, 2)
outs.append(out)
return tuple(outs)
def train(self, mode=True):
super(VisionTransformer, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, nn.LayerNorm):
m.eval()
|