Spaces:
Runtime error
Runtime error
File size: 8,135 Bytes
b334e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple
import torch
from torch import nn as nn
from torch.autograd import Function
from ..utils import ext_loader
from .ball_query import ball_query
from .knn import knn
ext_module = ext_loader.load_ext(
'_ext', ['group_points_forward', 'group_points_backward'])
class QueryAndGroup(nn.Module):
"""Groups points with a ball query of radius.
Args:
max_radius (float): The maximum radius of the balls.
If None is given, we will use kNN sampling instead of ball query.
sample_num (int): Maximum number of features to gather in the ball.
min_radius (float, optional): The minimum radius of the balls.
Default: 0.
use_xyz (bool, optional): Whether to use xyz.
Default: True.
return_grouped_xyz (bool, optional): Whether to return grouped xyz.
Default: False.
normalize_xyz (bool, optional): Whether to normalize xyz.
Default: False.
uniform_sample (bool, optional): Whether to sample uniformly.
Default: False
return_unique_cnt (bool, optional): Whether to return the count of
unique samples. Default: False.
return_grouped_idx (bool, optional): Whether to return grouped idx.
Default: False.
"""
def __init__(self,
max_radius,
sample_num,
min_radius=0,
use_xyz=True,
return_grouped_xyz=False,
normalize_xyz=False,
uniform_sample=False,
return_unique_cnt=False,
return_grouped_idx=False):
super().__init__()
self.max_radius = max_radius
self.min_radius = min_radius
self.sample_num = sample_num
self.use_xyz = use_xyz
self.return_grouped_xyz = return_grouped_xyz
self.normalize_xyz = normalize_xyz
self.uniform_sample = uniform_sample
self.return_unique_cnt = return_unique_cnt
self.return_grouped_idx = return_grouped_idx
if self.return_unique_cnt:
assert self.uniform_sample, \
'uniform_sample should be True when ' \
'returning the count of unique samples'
if self.max_radius is None:
assert not self.normalize_xyz, \
'can not normalize grouped xyz when max_radius is None'
def forward(self, points_xyz, center_xyz, features=None):
"""
Args:
points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
center_xyz (Tensor): (B, npoint, 3) coordinates of the centriods.
features (Tensor): (B, C, N) Descriptors of the features.
Returns:
Tensor: (B, 3 + C, npoint, sample_num) Grouped feature.
"""
# if self.max_radius is None, we will perform kNN instead of ball query
# idx is of shape [B, npoint, sample_num]
if self.max_radius is None:
idx = knn(self.sample_num, points_xyz, center_xyz, False)
idx = idx.transpose(1, 2).contiguous()
else:
idx = ball_query(self.min_radius, self.max_radius, self.sample_num,
points_xyz, center_xyz)
if self.uniform_sample:
unique_cnt = torch.zeros((idx.shape[0], idx.shape[1]))
for i_batch in range(idx.shape[0]):
for i_region in range(idx.shape[1]):
unique_ind = torch.unique(idx[i_batch, i_region, :])
num_unique = unique_ind.shape[0]
unique_cnt[i_batch, i_region] = num_unique
sample_ind = torch.randint(
0,
num_unique, (self.sample_num - num_unique, ),
dtype=torch.long)
all_ind = torch.cat((unique_ind, unique_ind[sample_ind]))
idx[i_batch, i_region, :] = all_ind
xyz_trans = points_xyz.transpose(1, 2).contiguous()
# (B, 3, npoint, sample_num)
grouped_xyz = grouping_operation(xyz_trans, idx)
grouped_xyz_diff = grouped_xyz - \
center_xyz.transpose(1, 2).unsqueeze(-1) # relative offsets
if self.normalize_xyz:
grouped_xyz_diff /= self.max_radius
if features is not None:
grouped_features = grouping_operation(features, idx)
if self.use_xyz:
# (B, C + 3, npoint, sample_num)
new_features = torch.cat([grouped_xyz_diff, grouped_features],
dim=1)
else:
new_features = grouped_features
else:
assert (self.use_xyz
), 'Cannot have not features and not use xyz as a feature!'
new_features = grouped_xyz_diff
ret = [new_features]
if self.return_grouped_xyz:
ret.append(grouped_xyz)
if self.return_unique_cnt:
ret.append(unique_cnt)
if self.return_grouped_idx:
ret.append(idx)
if len(ret) == 1:
return ret[0]
else:
return tuple(ret)
class GroupAll(nn.Module):
"""Group xyz with feature.
Args:
use_xyz (bool): Whether to use xyz.
"""
def __init__(self, use_xyz: bool = True):
super().__init__()
self.use_xyz = use_xyz
def forward(self,
xyz: torch.Tensor,
new_xyz: torch.Tensor,
features: torch.Tensor = None):
"""
Args:
xyz (Tensor): (B, N, 3) xyz coordinates of the features.
new_xyz (Tensor): new xyz coordinates of the features.
features (Tensor): (B, C, N) features to group.
Returns:
Tensor: (B, C + 3, 1, N) Grouped feature.
"""
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
if features is not None:
grouped_features = features.unsqueeze(2)
if self.use_xyz:
# (B, 3 + C, 1, N)
new_features = torch.cat([grouped_xyz, grouped_features],
dim=1)
else:
new_features = grouped_features
else:
new_features = grouped_xyz
return new_features
class GroupingOperation(Function):
"""Group feature with given index."""
@staticmethod
def forward(ctx, features: torch.Tensor,
indices: torch.Tensor) -> torch.Tensor:
"""
Args:
features (Tensor): (B, C, N) tensor of features to group.
indices (Tensor): (B, npoint, nsample) the indices of
features to group with.
Returns:
Tensor: (B, C, npoint, nsample) Grouped features.
"""
features = features.contiguous()
indices = indices.contiguous()
B, nfeatures, nsample = indices.size()
_, C, N = features.size()
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
ext_module.group_points_forward(B, C, N, nfeatures, nsample, features,
indices, output)
ctx.for_backwards = (indices, N)
return output
@staticmethod
def backward(ctx,
grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
grad_out (Tensor): (B, C, npoint, nsample) tensor of the gradients
of the output from forward.
Returns:
Tensor: (B, C, N) gradient of the features.
"""
idx, N = ctx.for_backwards
B, C, npoint, nsample = grad_out.size()
grad_features = torch.cuda.FloatTensor(B, C, N).zero_()
grad_out_data = grad_out.data.contiguous()
ext_module.group_points_backward(B, C, N, npoint, nsample,
grad_out_data, idx,
grad_features.data)
return grad_features, None
grouping_operation = GroupingOperation.apply
|