File size: 7,196 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import pickle
import shutil
import tempfile
import time

import torch
import torch.distributed as dist

import annotator.uniformer.mmcv as mmcv
from annotator.uniformer.mmcv.runner import get_dist_info


def single_gpu_test(model, data_loader):
    """Test model with a single gpu.

    This method tests model with a single gpu and displays test progress bar.

    Args:
        model (nn.Module): Model to be tested.
        data_loader (nn.Dataloader): Pytorch data loader.

    Returns:
        list: The prediction results.
    """
    model.eval()
    results = []
    dataset = data_loader.dataset
    prog_bar = mmcv.ProgressBar(len(dataset))
    for data in data_loader:
        with torch.no_grad():
            result = model(return_loss=False, **data)
        results.extend(result)

        # Assume result has the same length of batch_size
        # refer to https://github.com/open-mmlab/mmcv/issues/985
        batch_size = len(result)
        for _ in range(batch_size):
            prog_bar.update()
    return results


def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
    """Test model with multiple gpus.

    This method tests model with multiple gpus and collects the results
    under two different modes: gpu and cpu modes. By setting
    ``gpu_collect=True``, it encodes results to gpu tensors and use gpu
    communication for results collection. On cpu mode it saves the results on
    different gpus to ``tmpdir`` and collects them by the rank 0 worker.

    Args:
        model (nn.Module): Model to be tested.
        data_loader (nn.Dataloader): Pytorch data loader.
        tmpdir (str): Path of directory to save the temporary results from
            different gpus under cpu mode.
        gpu_collect (bool): Option to use either gpu or cpu to collect results.

    Returns:
        list: The prediction results.
    """
    model.eval()
    results = []
    dataset = data_loader.dataset
    rank, world_size = get_dist_info()
    if rank == 0:
        prog_bar = mmcv.ProgressBar(len(dataset))
    time.sleep(2)  # This line can prevent deadlock problem in some cases.
    for i, data in enumerate(data_loader):
        with torch.no_grad():
            result = model(return_loss=False, **data)
        results.extend(result)

        if rank == 0:
            batch_size = len(result)
            batch_size_all = batch_size * world_size
            if batch_size_all + prog_bar.completed > len(dataset):
                batch_size_all = len(dataset) - prog_bar.completed
            for _ in range(batch_size_all):
                prog_bar.update()

    # collect results from all ranks
    if gpu_collect:
        results = collect_results_gpu(results, len(dataset))
    else:
        results = collect_results_cpu(results, len(dataset), tmpdir)
    return results


def collect_results_cpu(result_part, size, tmpdir=None):
    """Collect results under cpu mode.

    On cpu mode, this function will save the results on different gpus to
    ``tmpdir`` and collect them by the rank 0 worker.

    Args:
        result_part (list): Result list containing result parts
            to be collected.
        size (int): Size of the results, commonly equal to length of
            the results.
        tmpdir (str | None): temporal directory for collected results to
            store. If set to None, it will create a random temporal directory
            for it.

    Returns:
        list: The collected results.
    """
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            mmcv.mkdir_or_exist('.dist_test')
            tmpdir = tempfile.mkdtemp(dir='.dist_test')
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, f'part_{i}.pkl')
            part_result = mmcv.load(part_file)
            # When data is severely insufficient, an empty part_result
            # on a certain gpu could makes the overall outputs empty.
            if part_result:
                part_list.append(part_result)
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results


def collect_results_gpu(result_part, size):
    """Collect results under gpu mode.

    On gpu mode, this function will encode results to gpu tensors and use gpu
    communication for results collection.

    Args:
        result_part (list): Result list containing result parts
            to be collected.
        size (int): Size of the results, commonly equal to length of
            the results.

    Returns:
        list: The collected results.
    """
    rank, world_size = get_dist_info()
    # dump result part to tensor with pickle
    part_tensor = torch.tensor(
        bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
    # gather all result part tensor shape
    shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
    shape_list = [shape_tensor.clone() for _ in range(world_size)]
    dist.all_gather(shape_list, shape_tensor)
    # padding result part tensor to max length
    shape_max = torch.tensor(shape_list).max()
    part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
    part_send[:shape_tensor[0]] = part_tensor
    part_recv_list = [
        part_tensor.new_zeros(shape_max) for _ in range(world_size)
    ]
    # gather all result part
    dist.all_gather(part_recv_list, part_send)

    if rank == 0:
        part_list = []
        for recv, shape in zip(part_recv_list, shape_list):
            part_result = pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())
            # When data is severely insufficient, an empty part_result
            # on a certain gpu could makes the overall outputs empty.
            if part_result:
                part_list.append(part_result)
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        return ordered_results