File size: 11,267 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter

from annotator.uniformer.mmcv.cnn import NORM_LAYERS
from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext', [
    'sync_bn_forward_mean', 'sync_bn_forward_var', 'sync_bn_forward_output',
    'sync_bn_backward_param', 'sync_bn_backward_data'
])


class SyncBatchNormFunction(Function):

    @staticmethod
    def symbolic(g, input, running_mean, running_var, weight, bias, momentum,
                 eps, group, group_size, stats_mode):
        return g.op(
            'mmcv::MMCVSyncBatchNorm',
            input,
            running_mean,
            running_var,
            weight,
            bias,
            momentum_f=momentum,
            eps_f=eps,
            group_i=group,
            group_size_i=group_size,
            stats_mode=stats_mode)

    @staticmethod
    def forward(self, input, running_mean, running_var, weight, bias, momentum,
                eps, group, group_size, stats_mode):
        self.momentum = momentum
        self.eps = eps
        self.group = group
        self.group_size = group_size
        self.stats_mode = stats_mode

        assert isinstance(
                   input, (torch.HalfTensor, torch.FloatTensor,
                           torch.cuda.HalfTensor, torch.cuda.FloatTensor)), \
               f'only support Half or Float Tensor, but {input.type()}'
        output = torch.zeros_like(input)
        input3d = input.flatten(start_dim=2)
        output3d = output.view_as(input3d)
        num_channels = input3d.size(1)

        # ensure mean/var/norm/std are initialized as zeros
        # ``torch.empty()`` does not guarantee that
        mean = torch.zeros(
            num_channels, dtype=torch.float, device=input3d.device)
        var = torch.zeros(
            num_channels, dtype=torch.float, device=input3d.device)
        norm = torch.zeros_like(
            input3d, dtype=torch.float, device=input3d.device)
        std = torch.zeros(
            num_channels, dtype=torch.float, device=input3d.device)

        batch_size = input3d.size(0)
        if batch_size > 0:
            ext_module.sync_bn_forward_mean(input3d, mean)
            batch_flag = torch.ones([1], device=mean.device, dtype=mean.dtype)
        else:
            # skip updating mean and leave it as zeros when the input is empty
            batch_flag = torch.zeros([1], device=mean.device, dtype=mean.dtype)

        # synchronize mean and the batch flag
        vec = torch.cat([mean, batch_flag])
        if self.stats_mode == 'N':
            vec *= batch_size
        if self.group_size > 1:
            dist.all_reduce(vec, group=self.group)
        total_batch = vec[-1].detach()
        mean = vec[:num_channels]

        if self.stats_mode == 'default':
            mean = mean / self.group_size
        elif self.stats_mode == 'N':
            mean = mean / total_batch.clamp(min=1)
        else:
            raise NotImplementedError

        # leave var as zeros when the input is empty
        if batch_size > 0:
            ext_module.sync_bn_forward_var(input3d, mean, var)

        if self.stats_mode == 'N':
            var *= batch_size
        if self.group_size > 1:
            dist.all_reduce(var, group=self.group)

        if self.stats_mode == 'default':
            var /= self.group_size
        elif self.stats_mode == 'N':
            var /= total_batch.clamp(min=1)
        else:
            raise NotImplementedError

        # if the total batch size over all the ranks is zero,
        # we should not update the statistics in the current batch
        update_flag = total_batch.clamp(max=1)
        momentum = update_flag * self.momentum
        ext_module.sync_bn_forward_output(
            input3d,
            mean,
            var,
            weight,
            bias,
            running_mean,
            running_var,
            norm,
            std,
            output3d,
            eps=self.eps,
            momentum=momentum,
            group_size=self.group_size)
        self.save_for_backward(norm, std, weight)
        return output

    @staticmethod
    @once_differentiable
    def backward(self, grad_output):
        norm, std, weight = self.saved_tensors
        grad_weight = torch.zeros_like(weight)
        grad_bias = torch.zeros_like(weight)
        grad_input = torch.zeros_like(grad_output)
        grad_output3d = grad_output.flatten(start_dim=2)
        grad_input3d = grad_input.view_as(grad_output3d)

        batch_size = grad_input3d.size(0)
        if batch_size > 0:
            ext_module.sync_bn_backward_param(grad_output3d, norm, grad_weight,
                                              grad_bias)

        # all reduce
        if self.group_size > 1:
            dist.all_reduce(grad_weight, group=self.group)
            dist.all_reduce(grad_bias, group=self.group)
            grad_weight /= self.group_size
            grad_bias /= self.group_size

        if batch_size > 0:
            ext_module.sync_bn_backward_data(grad_output3d, weight,
                                             grad_weight, grad_bias, norm, std,
                                             grad_input3d)

        return grad_input, None, None, grad_weight, grad_bias, \
            None, None, None, None, None


@NORM_LAYERS.register_module(name='MMSyncBN')
class SyncBatchNorm(Module):
    """Synchronized Batch Normalization.

    Args:
        num_features (int): number of features/chennels in input tensor
        eps (float, optional): a value added to the denominator for numerical
            stability. Defaults to 1e-5.
        momentum (float, optional): the value used for the running_mean and
            running_var computation. Defaults to 0.1.
        affine (bool, optional): whether to use learnable affine parameters.
            Defaults to True.
        track_running_stats (bool, optional): whether to track the running
            mean and variance during training. When set to False, this
            module does not track such statistics, and initializes statistics
            buffers ``running_mean`` and ``running_var`` as ``None``. When
            these buffers are ``None``, this module always uses batch
            statistics in both training and eval modes. Defaults to True.
        group (int, optional): synchronization of stats happen within
            each process group individually. By default it is synchronization
            across the whole world. Defaults to None.
        stats_mode (str, optional): The statistical mode. Available options
            includes ``'default'`` and ``'N'``. Defaults to 'default'.
            When ``stats_mode=='default'``, it computes the overall statistics
            using those from each worker with equal weight, i.e., the
            statistics are synchronized and simply divied by ``group``. This
            mode will produce inaccurate statistics when empty tensors occur.
            When ``stats_mode=='N'``, it compute the overall statistics using
            the total number of batches in each worker ignoring the number of
            group, i.e., the statistics are synchronized and then divied by
            the total batch ``N``. This mode is beneficial when empty tensors
            occur during training, as it average the total mean by the real
            number of batch.
    """

    def __init__(self,
                 num_features,
                 eps=1e-5,
                 momentum=0.1,
                 affine=True,
                 track_running_stats=True,
                 group=None,
                 stats_mode='default'):
        super(SyncBatchNorm, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum
        self.affine = affine
        self.track_running_stats = track_running_stats
        group = dist.group.WORLD if group is None else group
        self.group = group
        self.group_size = dist.get_world_size(group)
        assert stats_mode in ['default', 'N'], \
            f'"stats_mode" only accepts "default" and "N", got "{stats_mode}"'
        self.stats_mode = stats_mode
        if self.affine:
            self.weight = Parameter(torch.Tensor(num_features))
            self.bias = Parameter(torch.Tensor(num_features))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)
        if self.track_running_stats:
            self.register_buffer('running_mean', torch.zeros(num_features))
            self.register_buffer('running_var', torch.ones(num_features))
            self.register_buffer('num_batches_tracked',
                                 torch.tensor(0, dtype=torch.long))
        else:
            self.register_buffer('running_mean', None)
            self.register_buffer('running_var', None)
            self.register_buffer('num_batches_tracked', None)
        self.reset_parameters()

    def reset_running_stats(self):
        if self.track_running_stats:
            self.running_mean.zero_()
            self.running_var.fill_(1)
            self.num_batches_tracked.zero_()

    def reset_parameters(self):
        self.reset_running_stats()
        if self.affine:
            self.weight.data.uniform_()  # pytorch use ones_()
            self.bias.data.zero_()

    def forward(self, input):
        if input.dim() < 2:
            raise ValueError(
                f'expected at least 2D input, got {input.dim()}D input')
        if self.momentum is None:
            exponential_average_factor = 0.0
        else:
            exponential_average_factor = self.momentum

        if self.training and self.track_running_stats:
            if self.num_batches_tracked is not None:
                self.num_batches_tracked += 1
                if self.momentum is None:  # use cumulative moving average
                    exponential_average_factor = 1.0 / float(
                        self.num_batches_tracked)
                else:  # use exponential moving average
                    exponential_average_factor = self.momentum

        if self.training or not self.track_running_stats:
            return SyncBatchNormFunction.apply(
                input, self.running_mean, self.running_var, self.weight,
                self.bias, exponential_average_factor, self.eps, self.group,
                self.group_size, self.stats_mode)
        else:
            return F.batch_norm(input, self.running_mean, self.running_var,
                                self.weight, self.bias, False,
                                exponential_average_factor, self.eps)

    def __repr__(self):
        s = self.__class__.__name__
        s += f'({self.num_features}, '
        s += f'eps={self.eps}, '
        s += f'momentum={self.momentum}, '
        s += f'affine={self.affine}, '
        s += f'track_running_stats={self.track_running_stats}, '
        s += f'group_size={self.group_size},'
        s += f'stats_mode={self.stats_mode})'
        return s