File size: 6,053 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) OpenMMLab. All rights reserved.
import logging

import torch.nn as nn

from .utils import constant_init, kaiming_init, normal_init


def conv3x3(in_planes, out_planes, dilation=1):
    """3x3 convolution with padding."""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        padding=dilation,
        dilation=dilation)


def make_vgg_layer(inplanes,
                   planes,
                   num_blocks,
                   dilation=1,
                   with_bn=False,
                   ceil_mode=False):
    layers = []
    for _ in range(num_blocks):
        layers.append(conv3x3(inplanes, planes, dilation))
        if with_bn:
            layers.append(nn.BatchNorm2d(planes))
        layers.append(nn.ReLU(inplace=True))
        inplanes = planes
    layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode))

    return layers


class VGG(nn.Module):
    """VGG backbone.

    Args:
        depth (int): Depth of vgg, from {11, 13, 16, 19}.
        with_bn (bool): Use BatchNorm or not.
        num_classes (int): number of classes for classification.
        num_stages (int): VGG stages, normally 5.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
            running stats (mean and var).
        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
    """

    arch_settings = {
        11: (1, 1, 2, 2, 2),
        13: (2, 2, 2, 2, 2),
        16: (2, 2, 3, 3, 3),
        19: (2, 2, 4, 4, 4)
    }

    def __init__(self,
                 depth,
                 with_bn=False,
                 num_classes=-1,
                 num_stages=5,
                 dilations=(1, 1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3, 4),
                 frozen_stages=-1,
                 bn_eval=True,
                 bn_frozen=False,
                 ceil_mode=False,
                 with_last_pool=True):
        super(VGG, self).__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for vgg')
        assert num_stages >= 1 and num_stages <= 5
        stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        assert len(dilations) == num_stages
        assert max(out_indices) <= num_stages

        self.num_classes = num_classes
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.bn_eval = bn_eval
        self.bn_frozen = bn_frozen

        self.inplanes = 3
        start_idx = 0
        vgg_layers = []
        self.range_sub_modules = []
        for i, num_blocks in enumerate(self.stage_blocks):
            num_modules = num_blocks * (2 + with_bn) + 1
            end_idx = start_idx + num_modules
            dilation = dilations[i]
            planes = 64 * 2**i if i < 4 else 512
            vgg_layer = make_vgg_layer(
                self.inplanes,
                planes,
                num_blocks,
                dilation=dilation,
                with_bn=with_bn,
                ceil_mode=ceil_mode)
            vgg_layers.extend(vgg_layer)
            self.inplanes = planes
            self.range_sub_modules.append([start_idx, end_idx])
            start_idx = end_idx
        if not with_last_pool:
            vgg_layers.pop(-1)
            self.range_sub_modules[-1][1] -= 1
        self.module_name = 'features'
        self.add_module(self.module_name, nn.Sequential(*vgg_layers))

        if self.num_classes > 0:
            self.classifier = nn.Sequential(
                nn.Linear(512 * 7 * 7, 4096),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(4096, 4096),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(4096, num_classes),
            )

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            from ..runner import load_checkpoint
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
                elif isinstance(m, nn.Linear):
                    normal_init(m, std=0.01)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        outs = []
        vgg_layers = getattr(self, self.module_name)
        for i in range(len(self.stage_blocks)):
            for j in range(*self.range_sub_modules[i]):
                vgg_layer = vgg_layers[j]
                x = vgg_layer(x)
            if i in self.out_indices:
                outs.append(x)
        if self.num_classes > 0:
            x = x.view(x.size(0), -1)
            x = self.classifier(x)
            outs.append(x)
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def train(self, mode=True):
        super(VGG, self).train(mode)
        if self.bn_eval:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                    if self.bn_frozen:
                        for params in m.parameters():
                            params.requires_grad = False
        vgg_layers = getattr(self, self.module_name)
        if mode and self.frozen_stages >= 0:
            for i in range(self.frozen_stages):
                for j in range(*self.range_sub_modules[i]):
                    mod = vgg_layers[j]
                    mod.eval()
                    for param in mod.parameters():
                        param.requires_grad = False