File size: 15,999 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright (c) OpenMMLab. All rights reserved.
import math

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from ..utils import kaiming_init
from .registry import PLUGIN_LAYERS


@PLUGIN_LAYERS.register_module()
class GeneralizedAttention(nn.Module):
    """GeneralizedAttention module.

    See 'An Empirical Study of Spatial Attention Mechanisms in Deep Networks'
    (https://arxiv.org/abs/1711.07971) for details.

    Args:
        in_channels (int): Channels of the input feature map.
        spatial_range (int): The spatial range. -1 indicates no spatial range
            constraint. Default: -1.
        num_heads (int): The head number of empirical_attention module.
            Default: 9.
        position_embedding_dim (int): The position embedding dimension.
            Default: -1.
        position_magnitude (int): A multiplier acting on coord difference.
            Default: 1.
        kv_stride (int): The feature stride acting on key/value feature map.
            Default: 2.
        q_stride (int): The feature stride acting on query feature map.
            Default: 1.
        attention_type (str): A binary indicator string for indicating which
            items in generalized empirical_attention module are used.
            Default: '1111'.

            - '1000' indicates 'query and key content' (appr - appr) item,
            - '0100' indicates 'query content and relative position'
              (appr - position) item,
            - '0010' indicates 'key content only' (bias - appr) item,
            - '0001' indicates 'relative position only' (bias - position) item.
    """

    _abbr_ = 'gen_attention_block'

    def __init__(self,
                 in_channels,
                 spatial_range=-1,
                 num_heads=9,
                 position_embedding_dim=-1,
                 position_magnitude=1,
                 kv_stride=2,
                 q_stride=1,
                 attention_type='1111'):

        super(GeneralizedAttention, self).__init__()

        # hard range means local range for non-local operation
        self.position_embedding_dim = (
            position_embedding_dim
            if position_embedding_dim > 0 else in_channels)

        self.position_magnitude = position_magnitude
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.spatial_range = spatial_range
        self.kv_stride = kv_stride
        self.q_stride = q_stride
        self.attention_type = [bool(int(_)) for _ in attention_type]
        self.qk_embed_dim = in_channels // num_heads
        out_c = self.qk_embed_dim * num_heads

        if self.attention_type[0] or self.attention_type[1]:
            self.query_conv = nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_c,
                kernel_size=1,
                bias=False)
            self.query_conv.kaiming_init = True

        if self.attention_type[0] or self.attention_type[2]:
            self.key_conv = nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_c,
                kernel_size=1,
                bias=False)
            self.key_conv.kaiming_init = True

        self.v_dim = in_channels // num_heads
        self.value_conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=self.v_dim * num_heads,
            kernel_size=1,
            bias=False)
        self.value_conv.kaiming_init = True

        if self.attention_type[1] or self.attention_type[3]:
            self.appr_geom_fc_x = nn.Linear(
                self.position_embedding_dim // 2, out_c, bias=False)
            self.appr_geom_fc_x.kaiming_init = True

            self.appr_geom_fc_y = nn.Linear(
                self.position_embedding_dim // 2, out_c, bias=False)
            self.appr_geom_fc_y.kaiming_init = True

        if self.attention_type[2]:
            stdv = 1.0 / math.sqrt(self.qk_embed_dim * 2)
            appr_bias_value = -2 * stdv * torch.rand(out_c) + stdv
            self.appr_bias = nn.Parameter(appr_bias_value)

        if self.attention_type[3]:
            stdv = 1.0 / math.sqrt(self.qk_embed_dim * 2)
            geom_bias_value = -2 * stdv * torch.rand(out_c) + stdv
            self.geom_bias = nn.Parameter(geom_bias_value)

        self.proj_conv = nn.Conv2d(
            in_channels=self.v_dim * num_heads,
            out_channels=in_channels,
            kernel_size=1,
            bias=True)
        self.proj_conv.kaiming_init = True
        self.gamma = nn.Parameter(torch.zeros(1))

        if self.spatial_range >= 0:
            # only works when non local is after 3*3 conv
            if in_channels == 256:
                max_len = 84
            elif in_channels == 512:
                max_len = 42

            max_len_kv = int((max_len - 1.0) / self.kv_stride + 1)
            local_constraint_map = np.ones(
                (max_len, max_len, max_len_kv, max_len_kv), dtype=np.int)
            for iy in range(max_len):
                for ix in range(max_len):
                    local_constraint_map[
                        iy, ix,
                        max((iy - self.spatial_range) //
                            self.kv_stride, 0):min((iy + self.spatial_range +
                                                    1) // self.kv_stride +
                                                   1, max_len),
                        max((ix - self.spatial_range) //
                            self.kv_stride, 0):min((ix + self.spatial_range +
                                                    1) // self.kv_stride +
                                                   1, max_len)] = 0

            self.local_constraint_map = nn.Parameter(
                torch.from_numpy(local_constraint_map).byte(),
                requires_grad=False)

        if self.q_stride > 1:
            self.q_downsample = nn.AvgPool2d(
                kernel_size=1, stride=self.q_stride)
        else:
            self.q_downsample = None

        if self.kv_stride > 1:
            self.kv_downsample = nn.AvgPool2d(
                kernel_size=1, stride=self.kv_stride)
        else:
            self.kv_downsample = None

        self.init_weights()

    def get_position_embedding(self,
                               h,
                               w,
                               h_kv,
                               w_kv,
                               q_stride,
                               kv_stride,
                               device,
                               dtype,
                               feat_dim,
                               wave_length=1000):
        # the default type of Tensor is float32, leading to type mismatch
        # in fp16 mode. Cast it to support fp16 mode.
        h_idxs = torch.linspace(0, h - 1, h).to(device=device, dtype=dtype)
        h_idxs = h_idxs.view((h, 1)) * q_stride

        w_idxs = torch.linspace(0, w - 1, w).to(device=device, dtype=dtype)
        w_idxs = w_idxs.view((w, 1)) * q_stride

        h_kv_idxs = torch.linspace(0, h_kv - 1, h_kv).to(
            device=device, dtype=dtype)
        h_kv_idxs = h_kv_idxs.view((h_kv, 1)) * kv_stride

        w_kv_idxs = torch.linspace(0, w_kv - 1, w_kv).to(
            device=device, dtype=dtype)
        w_kv_idxs = w_kv_idxs.view((w_kv, 1)) * kv_stride

        # (h, h_kv, 1)
        h_diff = h_idxs.unsqueeze(1) - h_kv_idxs.unsqueeze(0)
        h_diff *= self.position_magnitude

        # (w, w_kv, 1)
        w_diff = w_idxs.unsqueeze(1) - w_kv_idxs.unsqueeze(0)
        w_diff *= self.position_magnitude

        feat_range = torch.arange(0, feat_dim / 4).to(
            device=device, dtype=dtype)

        dim_mat = torch.Tensor([wave_length]).to(device=device, dtype=dtype)
        dim_mat = dim_mat**((4. / feat_dim) * feat_range)
        dim_mat = dim_mat.view((1, 1, -1))

        embedding_x = torch.cat(
            ((w_diff / dim_mat).sin(), (w_diff / dim_mat).cos()), dim=2)

        embedding_y = torch.cat(
            ((h_diff / dim_mat).sin(), (h_diff / dim_mat).cos()), dim=2)

        return embedding_x, embedding_y

    def forward(self, x_input):
        num_heads = self.num_heads

        # use empirical_attention
        if self.q_downsample is not None:
            x_q = self.q_downsample(x_input)
        else:
            x_q = x_input
        n, _, h, w = x_q.shape

        if self.kv_downsample is not None:
            x_kv = self.kv_downsample(x_input)
        else:
            x_kv = x_input
        _, _, h_kv, w_kv = x_kv.shape

        if self.attention_type[0] or self.attention_type[1]:
            proj_query = self.query_conv(x_q).view(
                (n, num_heads, self.qk_embed_dim, h * w))
            proj_query = proj_query.permute(0, 1, 3, 2)

        if self.attention_type[0] or self.attention_type[2]:
            proj_key = self.key_conv(x_kv).view(
                (n, num_heads, self.qk_embed_dim, h_kv * w_kv))

        if self.attention_type[1] or self.attention_type[3]:
            position_embed_x, position_embed_y = self.get_position_embedding(
                h, w, h_kv, w_kv, self.q_stride, self.kv_stride,
                x_input.device, x_input.dtype, self.position_embedding_dim)
            # (n, num_heads, w, w_kv, dim)
            position_feat_x = self.appr_geom_fc_x(position_embed_x).\
                view(1, w, w_kv, num_heads, self.qk_embed_dim).\
                permute(0, 3, 1, 2, 4).\
                repeat(n, 1, 1, 1, 1)

            # (n, num_heads, h, h_kv, dim)
            position_feat_y = self.appr_geom_fc_y(position_embed_y).\
                view(1, h, h_kv, num_heads, self.qk_embed_dim).\
                permute(0, 3, 1, 2, 4).\
                repeat(n, 1, 1, 1, 1)

            position_feat_x /= math.sqrt(2)
            position_feat_y /= math.sqrt(2)

        # accelerate for saliency only
        if (np.sum(self.attention_type) == 1) and self.attention_type[2]:
            appr_bias = self.appr_bias.\
                view(1, num_heads, 1, self.qk_embed_dim).\
                repeat(n, 1, 1, 1)

            energy = torch.matmul(appr_bias, proj_key).\
                view(n, num_heads, 1, h_kv * w_kv)

            h = 1
            w = 1
        else:
            # (n, num_heads, h*w, h_kv*w_kv), query before key, 540mb for
            if not self.attention_type[0]:
                energy = torch.zeros(
                    n,
                    num_heads,
                    h,
                    w,
                    h_kv,
                    w_kv,
                    dtype=x_input.dtype,
                    device=x_input.device)

            # attention_type[0]: appr - appr
            # attention_type[1]: appr - position
            # attention_type[2]: bias - appr
            # attention_type[3]: bias - position
            if self.attention_type[0] or self.attention_type[2]:
                if self.attention_type[0] and self.attention_type[2]:
                    appr_bias = self.appr_bias.\
                        view(1, num_heads, 1, self.qk_embed_dim)
                    energy = torch.matmul(proj_query + appr_bias, proj_key).\
                        view(n, num_heads, h, w, h_kv, w_kv)

                elif self.attention_type[0]:
                    energy = torch.matmul(proj_query, proj_key).\
                        view(n, num_heads, h, w, h_kv, w_kv)

                elif self.attention_type[2]:
                    appr_bias = self.appr_bias.\
                        view(1, num_heads, 1, self.qk_embed_dim).\
                        repeat(n, 1, 1, 1)

                    energy += torch.matmul(appr_bias, proj_key).\
                        view(n, num_heads, 1, 1, h_kv, w_kv)

            if self.attention_type[1] or self.attention_type[3]:
                if self.attention_type[1] and self.attention_type[3]:
                    geom_bias = self.geom_bias.\
                        view(1, num_heads, 1, self.qk_embed_dim)

                    proj_query_reshape = (proj_query + geom_bias).\
                        view(n, num_heads, h, w, self.qk_embed_dim)

                    energy_x = torch.matmul(
                        proj_query_reshape.permute(0, 1, 3, 2, 4),
                        position_feat_x.permute(0, 1, 2, 4, 3))
                    energy_x = energy_x.\
                        permute(0, 1, 3, 2, 4).unsqueeze(4)

                    energy_y = torch.matmul(
                        proj_query_reshape,
                        position_feat_y.permute(0, 1, 2, 4, 3))
                    energy_y = energy_y.unsqueeze(5)

                    energy += energy_x + energy_y

                elif self.attention_type[1]:
                    proj_query_reshape = proj_query.\
                        view(n, num_heads, h, w, self.qk_embed_dim)
                    proj_query_reshape = proj_query_reshape.\
                        permute(0, 1, 3, 2, 4)
                    position_feat_x_reshape = position_feat_x.\
                        permute(0, 1, 2, 4, 3)
                    position_feat_y_reshape = position_feat_y.\
                        permute(0, 1, 2, 4, 3)

                    energy_x = torch.matmul(proj_query_reshape,
                                            position_feat_x_reshape)
                    energy_x = energy_x.permute(0, 1, 3, 2, 4).unsqueeze(4)

                    energy_y = torch.matmul(proj_query_reshape,
                                            position_feat_y_reshape)
                    energy_y = energy_y.unsqueeze(5)

                    energy += energy_x + energy_y

                elif self.attention_type[3]:
                    geom_bias = self.geom_bias.\
                        view(1, num_heads, self.qk_embed_dim, 1).\
                        repeat(n, 1, 1, 1)

                    position_feat_x_reshape = position_feat_x.\
                        view(n, num_heads, w*w_kv, self.qk_embed_dim)

                    position_feat_y_reshape = position_feat_y.\
                        view(n, num_heads, h * h_kv, self.qk_embed_dim)

                    energy_x = torch.matmul(position_feat_x_reshape, geom_bias)
                    energy_x = energy_x.view(n, num_heads, 1, w, 1, w_kv)

                    energy_y = torch.matmul(position_feat_y_reshape, geom_bias)
                    energy_y = energy_y.view(n, num_heads, h, 1, h_kv, 1)

                    energy += energy_x + energy_y

            energy = energy.view(n, num_heads, h * w, h_kv * w_kv)

        if self.spatial_range >= 0:
            cur_local_constraint_map = \
                self.local_constraint_map[:h, :w, :h_kv, :w_kv].\
                contiguous().\
                view(1, 1, h*w, h_kv*w_kv)

            energy = energy.masked_fill_(cur_local_constraint_map,
                                         float('-inf'))

        attention = F.softmax(energy, 3)

        proj_value = self.value_conv(x_kv)
        proj_value_reshape = proj_value.\
            view((n, num_heads, self.v_dim, h_kv * w_kv)).\
            permute(0, 1, 3, 2)

        out = torch.matmul(attention, proj_value_reshape).\
            permute(0, 1, 3, 2).\
            contiguous().\
            view(n, self.v_dim * self.num_heads, h, w)

        out = self.proj_conv(out)

        # output is downsampled, upsample back to input size
        if self.q_downsample is not None:
            out = F.interpolate(
                out,
                size=x_input.shape[2:],
                mode='bilinear',
                align_corners=False)

        out = self.gamma * out + x_input
        return out

    def init_weights(self):
        for m in self.modules():
            if hasattr(m, 'kaiming_init') and m.kaiming_init:
                kaiming_init(
                    m,
                    mode='fan_in',
                    nonlinearity='leaky_relu',
                    bias=0,
                    distribution='uniform',
                    a=1)