import json from tqdm import tqdm from transformers import AutoTokenizer import clip import torch import faiss import os import numpy as np from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True def load_coco_data(coco_data_path): """We load in all images and only the train captions.""" annotations = json.load(open(coco_data_path))['images'] images = [] captions = [] for item in annotations: if item['split'] == 'restval': item['split'] = 'train' if item['split'] == 'train': for sentence in item['sentences']: captions.append({'image_id': item['cocoid'], 'caption': ' '.join(sentence['tokens'])}) images.append({'image_id': item['cocoid'], 'file_name': item['filename'].split('_')[-1]}) return images, captions def filter_captions(data): decoder_name = 'gpt2' tokenizer = AutoTokenizer.from_pretrained(decoder_name) bs = 512 image_ids = [d['image_id'] for d in data] caps = [d['caption'] for d in data] encodings = [] for idx in range(0, len(data), bs): encodings += tokenizer.batch_encode_plus(caps[idx:idx+bs], return_tensors='np')['input_ids'].tolist() filtered_image_ids, filtered_captions = [], [] assert len(image_ids) == len(caps) and len(caps) == len(encodings) for image_id, cap, encoding in zip(image_ids, caps, encodings): if len(encoding) <= 25: filtered_image_ids.append(image_id) filtered_captions.append(cap) return filtered_image_ids, filtered_captions def encode_captions(captions, model, device): bs = 256 encoded_captions = [] for idx in tqdm(range(0, len(captions), bs)): with torch.no_grad(): input_ids = clip.tokenize(captions[idx:idx+bs]).to(device) encoded_captions.append(model.encode_text(input_ids).cpu().numpy()) encoded_captions = np.concatenate(encoded_captions) return encoded_captions def encode_images(images, image_path, model, feature_extractor, device): image_ids = [i['image_id'] for i in images] bs = 64 image_features = [] for idx in tqdm(range(0, len(images), bs)): image_input = [feature_extractor(Image.open(os.path.join(image_path, i['file_name']))) for i in images[idx:idx+bs]] with torch.no_grad(): image_features.append(model.encode_image(torch.tensor(np.stack(image_input)).to(device)).cpu().numpy()) image_features = np.concatenate(image_features) return image_ids, image_features def get_nns(captions, images, k=15): xq = images.astype(np.float32) xb = captions.astype(np.float32) faiss.normalize_L2(xb) index = faiss.IndexFlatIP(xb.shape[1]) index.add(xb) faiss.normalize_L2(xq) D, I = index.search(xq, k) return index, I def filter_nns(nns, xb_image_ids, captions, xq_image_ids): """ We filter out nearest neighbors which are actual captions for the query image, keeping 7 neighbors per image.""" retrieved_captions = {} for nns_list, image_id in zip(nns, xq_image_ids): good_nns = [] for nn in zip(nns_list): if xb_image_ids[nn] == image_id: continue good_nns.append(captions[nn]) if len(good_nns) == 7: break assert len(good_nns) == 7 retrieved_captions[image_id] = good_nns return retrieved_captions def main(): coco_data_path = 'data/dataset_coco.json' # path to Karpathy splits downloaded from Kaggle image_path = 'data/images/' print('Loading data') images, captions = load_coco_data(coco_data_path) device = "cuda" if torch.cuda.is_available() else "cpu" clip_model, feature_extractor = clip.load("RN50x64", device=device) print('Filtering captions') xb_image_ids, captions = filter_captions(captions) print('Encoding captions') encoded_captions = encode_captions(captions, clip_model, device) print('Encoding images') xq_image_ids, encoded_images = encode_images(images, image_path, clip_model, feature_extractor, device) print('Retrieving neighbors') index, nns = get_nns(encoded_captions, encoded_images) retrieved_caps = filter_nns(nns, xb_image_ids, captions, xq_image_ids) print('Writing files') faiss.write_index(index, "datastore/coco_index") json.dump(captions, open('datastore/coco_index_captions.json', 'w')) json.dump(retrieved_caps, open('data/retrieved_caps_resnet50x64.json', 'w')) if __name__ == '__main__': main()