import gradio as gr import pickle from transformers import pipeline def load_model(selected_model): with open(selected_model, 'rb') as file: loaded_model = pickle.load(file) return loaded_model encoder = { 'negative':'assets/negative.jpg', 'neutral':'assets/neutral.jpg', 'positive':'assets/positive.jpeg' } classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli") def analyze_sentiment(text): results = classifier(text,["positive","negative",'neutral'],multi_label=True) mx = max(results['scores']) ind = results['scores'].index(mx) result = results['labels'][ind] return encoder[result] demo = gr.Interface(fn=analyze_sentiment, inputs=gr.Textbox(lines=2, placeholder="Escrbe algo para comenzar", label='Escribe algo para comenzar'), outputs="image", title="Analizador de Sentimientos") demo.launch(share=True)