Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
def load_model(selected_model):
|
6 |
+
with open(selected_model, 'rb') as file:
|
7 |
+
loaded_model = pickle.load(file)
|
8 |
+
return loaded_model
|
9 |
+
|
10 |
+
encoder = {
|
11 |
+
'negative':'assets/negative.jpg',
|
12 |
+
'neutral':'assets/neutral.jpg',
|
13 |
+
'positive':'assets/positive.jpeg'
|
14 |
+
}
|
15 |
+
|
16 |
+
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
17 |
+
def analyze_sentiment(text):
|
18 |
+
results = classifier(text,["positive","negative",'neutral'],multi_label=True)
|
19 |
+
mx = max(results['scores'])
|
20 |
+
ind = results['scores'].index(mx)
|
21 |
+
result = results['labels'][ind]
|
22 |
+
return encoder[result]
|
23 |
+
|
24 |
+
demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis")
|
25 |
+
demo.launch(share=True)
|