import streamlit as st import json import requests import csv import pandas as pd import tqdm import cohere import os from topically import Topically from bertopic import BERTopic from sklearn.cluster import KMeans import numpy as np venue = 'ICLR.cc/2023/Conference' venue_short = 'iclr2023' def get_conference_notes(venue, blind_submission=False): """ Get all notes of a conference (data) from OpenReview API. If results are not final, you should set blind_submission=True. """ blind_param = '-/Blind_Submission' if blind_submission else '' offset = 0 notes = [] while True: print('Offset:', offset, 'Data:', len(notes)) url = f'https://api.openreview.net/notes?invitation={venue}/{blind_param}&offset={offset}' response = requests.get(url) data = response.json() if len(data['notes']) == 0: break offset += 1000 notes.extend(data['notes']) return notes raw_notes = get_conference_notes(venue, blind_submission=True) st.title("ICLR2023 Papers Visualization") st.write("Number of submissions at ICLR 2023:", len(raw_notes)) df_raw = pd.json_normalize(raw_notes) # set index as first column # df_raw.set_index(df_raw.columns[0], inplace=True) accepted_venues = ['ICLR 2023 poster', 'ICLR 2023 notable top 5%', 'ICLR 2023 notable top 25%'] df = df_raw[df_raw["content.venue"].isin(accepted_venues)] st.write("Number of submissions accepted at ICLR 2023:", len(df)) df_filtered = df[['id', 'content.title', 'content.keywords', 'content.abstract']] df = df_filtered if "CO_API_KEY" not in os.environ: raise KeyError("CO_API_KEY not found in st.secrets or os.environ. Please set it in " ".streamlit/secrets.toml or as an environment variable.") co = cohere.Client(os.environ["CO_API_KEY"]) def get_visualizations(): list_of_titles = list(df["content.title"].values) embeds = co.embed(texts=list_of_titles, model="small").embeddings embeds_npy = np.array(embeds) # Load and initialize BERTopic to use KMeans clustering with 8 clusters only. cluster_model = KMeans(n_clusters=8) topic_model = BERTopic(hdbscan_model=cluster_model) # df is a dataframe. df['title'] is the column of text we're modeling df['topic'], probabilities = topic_model.fit_transform(df['content.title'], embeds_npy) app = Topically(os.environ["CO_API_KEY"]) df['topic_name'], topic_names = app.name_topics((df['content.title'], df['topic']), num_generations=5) #st.write("Topics extracted are:", topic_names) topic_model.set_topic_labels(topic_names) fig1 = topic_model.visualize_documents(df['content.title'].values, embeddings=embeds_npy, topics = list(range(8)), custom_labels=True) topic_model.set_topic_labels(topic_names) fig2 = topic_model.visualize_barchart(custom_labels=True) st.plotly_chart(fig1) st.plotly_chart(fig2) st.button("Run Visualization", on_click=get_visualizations)