Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import cv2 | |
import albumentations | |
from PIL import Image | |
from torch.utils.data import Dataset | |
class SegmentationBase(Dataset): | |
def __init__(self, | |
data_csv, data_root, segmentation_root, | |
size=None, random_crop=False, interpolation="bicubic", | |
n_labels=182, shift_segmentation=False, | |
): | |
self.n_labels = n_labels | |
self.shift_segmentation = shift_segmentation | |
self.data_csv = data_csv | |
self.data_root = data_root | |
self.segmentation_root = segmentation_root | |
with open(self.data_csv, "r") as f: | |
self.image_paths = f.read().splitlines() | |
self._length = len(self.image_paths) | |
self.labels = { | |
"relative_file_path_": [l for l in self.image_paths], | |
"file_path_": [os.path.join(self.data_root, l) | |
for l in self.image_paths], | |
"segmentation_path_": [os.path.join(self.segmentation_root, l.replace(".jpg", ".png")) | |
for l in self.image_paths] | |
} | |
size = None if size is not None and size<=0 else size | |
self.size = size | |
if self.size is not None: | |
self.interpolation = interpolation | |
self.interpolation = { | |
"nearest": cv2.INTER_NEAREST, | |
"bilinear": cv2.INTER_LINEAR, | |
"bicubic": cv2.INTER_CUBIC, | |
"area": cv2.INTER_AREA, | |
"lanczos": cv2.INTER_LANCZOS4}[self.interpolation] | |
self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, | |
interpolation=self.interpolation) | |
self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, | |
interpolation=cv2.INTER_NEAREST) | |
self.center_crop = not random_crop | |
if self.center_crop: | |
self.cropper = albumentations.CenterCrop(height=self.size, width=self.size) | |
else: | |
self.cropper = albumentations.RandomCrop(height=self.size, width=self.size) | |
self.preprocessor = self.cropper | |
def __len__(self): | |
return self._length | |
def __getitem__(self, i): | |
example = dict((k, self.labels[k][i]) for k in self.labels) | |
image = Image.open(example["file_path_"]) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
image = np.array(image).astype(np.uint8) | |
if self.size is not None: | |
image = self.image_rescaler(image=image)["image"] | |
segmentation = Image.open(example["segmentation_path_"]) | |
assert segmentation.mode == "L", segmentation.mode | |
segmentation = np.array(segmentation).astype(np.uint8) | |
if self.shift_segmentation: | |
# used to support segmentations containing unlabeled==255 label | |
segmentation = segmentation+1 | |
if self.size is not None: | |
segmentation = self.segmentation_rescaler(image=segmentation)["image"] | |
if self.size is not None: | |
processed = self.preprocessor(image=image, | |
mask=segmentation | |
) | |
else: | |
processed = {"image": image, | |
"mask": segmentation | |
} | |
example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) | |
segmentation = processed["mask"] | |
onehot = np.eye(self.n_labels)[segmentation] | |
example["segmentation"] = onehot | |
return example | |
class Examples(SegmentationBase): | |
def __init__(self, size=None, random_crop=False, interpolation="bicubic"): | |
super().__init__(data_csv="data/sflckr_examples.txt", | |
data_root="data/sflckr_images", | |
segmentation_root="data/sflckr_segmentations", | |
size=size, random_crop=random_crop, interpolation=interpolation) | |