Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import numpy as np | |
from tqdm import trange | |
from PIL import Image | |
def get_state(gpu): | |
import torch | |
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS") | |
if gpu: | |
midas.cuda() | |
midas.eval() | |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
transform = midas_transforms.default_transform | |
state = {"model": midas, | |
"transform": transform} | |
return state | |
def depth_to_rgba(x): | |
assert x.dtype == np.float32 | |
assert len(x.shape) == 2 | |
y = x.copy() | |
y.dtype = np.uint8 | |
y = y.reshape(x.shape+(4,)) | |
return np.ascontiguousarray(y) | |
def rgba_to_depth(x): | |
assert x.dtype == np.uint8 | |
assert len(x.shape) == 3 and x.shape[2] == 4 | |
y = x.copy() | |
y.dtype = np.float32 | |
y = y.reshape(x.shape[:2]) | |
return np.ascontiguousarray(y) | |
def run(x, state): | |
model = state["model"] | |
transform = state["transform"] | |
hw = x.shape[:2] | |
with torch.no_grad(): | |
prediction = model(transform((x + 1.0) * 127.5).cuda()) | |
prediction = torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=hw, | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
return output | |
def get_filename(relpath, level=-2): | |
# save class folder structure and filename: | |
fn = relpath.split(os.sep)[level:] | |
folder = fn[-2] | |
file = fn[-1].split('.')[0] | |
return folder, file | |
def save_depth(dataset, path, debug=False): | |
os.makedirs(path) | |
N = len(dset) | |
if debug: | |
N = 10 | |
state = get_state(gpu=True) | |
for idx in trange(N, desc="Data"): | |
ex = dataset[idx] | |
image, relpath = ex["image"], ex["relpath"] | |
folder, filename = get_filename(relpath) | |
# prepare | |
folderabspath = os.path.join(path, folder) | |
os.makedirs(folderabspath, exist_ok=True) | |
savepath = os.path.join(folderabspath, filename) | |
# run model | |
xout = run(image, state) | |
I = depth_to_rgba(xout) | |
Image.fromarray(I).save("{}.png".format(savepath)) | |
if __name__ == "__main__": | |
from taming.data.imagenet import ImageNetTrain, ImageNetValidation | |
out = "data/imagenet_depth" | |
if not os.path.exists(out): | |
print("Please create a folder or symlink '{}' to extract depth data ".format(out) + | |
"(be prepared that the output size will be larger than ImageNet itself).") | |
exit(1) | |
# go | |
dset = ImageNetValidation() | |
abspath = os.path.join(out, "val") | |
if os.path.exists(abspath): | |
print("{} exists - not doing anything.".format(abspath)) | |
else: | |
print("preparing {}".format(abspath)) | |
save_depth(dset, abspath) | |
print("done with validation split") | |
dset = ImageNetTrain() | |
abspath = os.path.join(out, "train") | |
if os.path.exists(abspath): | |
print("{} exists - not doing anything.".format(abspath)) | |
else: | |
print("preparing {}".format(abspath)) | |
save_depth(dset, abspath) | |
print("done with train split") | |
print("done done.") | |