Spaces:
Runtime error
Runtime error
import argparse, os | |
import cv2 | |
import torch | |
import numpy as np | |
import torchvision | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from itertools import islice | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import time | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from contextlib import nullcontext | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.modules.diffusionmodules.openaimodel import clear_feature_dic,get_feature_dic | |
from ldm.models.seg_module import Segmodule | |
import numpy as np | |
os.environ["CUDA_VISIBLE_DEVICES"] = "1" | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model.cuda() | |
model.eval() | |
return model | |
def put_watermark(img, wm_encoder=None): | |
if wm_encoder is not None: | |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
img = wm_encoder.encode(img, 'dwtDct') | |
img = Image.fromarray(img[:, :, ::-1]) | |
return img | |
def load_replacement(x): | |
try: | |
hwc = x.shape | |
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) | |
y = (np.array(y)/255.0).astype(x.dtype) | |
assert y.shape == x.shape | |
return y | |
except Exception: | |
return x | |
def plot_mask(img, masks, colors=None, alpha=0.8,indexlist=[0,1]) -> np.ndarray: | |
"""Visualize segmentation mask. | |
Parameters | |
---------- | |
img: numpy.ndarray | |
Image with shape `(H, W, 3)`. | |
masks: numpy.ndarray | |
Binary images with shape `(N, H, W)`. | |
colors: numpy.ndarray | |
corlor for mask, shape `(N, 3)`. | |
if None, generate random color for mask | |
alpha: float, optional, default 0.5 | |
Transparency of plotted mask | |
Returns | |
------- | |
numpy.ndarray | |
The image plotted with segmentation masks, shape `(H, W, 3)` | |
""" | |
H,W= masks.shape[0],masks.shape[1] | |
color_list=[[255,97,0],[128,42,42],[220,220,220],[255,153,18],[56,94,15],[127,255,212],[210,180,140],[221,160,221],[255,0,0],[255,128,0],[255,255,0],[128,255,0],[0,255,0],[0,255,128],[0,255,255],[0,128,255],[0,0,255],[128,0,255],[255,0,255],[255,0,128]]*6 | |
final_color_list=[np.array([[i]*512]*512) for i in color_list] | |
background=np.ones(img.shape)*255 | |
count=0 | |
colors=final_color_list[indexlist[count]] | |
for mask, color in zip(masks, colors): | |
color=final_color_list[indexlist[count]] | |
mask = np.stack([mask, mask, mask], -1) | |
img = np.where(mask, img * (1 - alpha) + color * alpha,background*0.4+img*0.6 ) | |
count+=1 | |
return img.astype(np.uint8) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
nargs="?", | |
default="a photo of a lion on a mountain top at sunset", | |
help="the prompt to render" | |
) | |
parser.add_argument( | |
"--category", | |
type=str, | |
nargs="?", | |
default="lion", | |
help="the category to ground" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2img-samples" | |
) | |
parser.add_argument( | |
"--skip_grid", | |
action='store_true', | |
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
) | |
parser.add_argument( | |
"--skip_save", | |
action='store_true', | |
help="do not save individual samples. For speed measurements.", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--laion400m", | |
action='store_true', | |
help="uses the LAION400M model", | |
) | |
parser.add_argument( | |
"--fixed_code", | |
action='store_true', | |
help="if enabled, uses the same starting code across samples ", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=1, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=512, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=512, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--C", | |
type=int, | |
default=4, | |
help="latent channels", | |
) | |
parser.add_argument( | |
"--f", | |
type=int, | |
default=8, | |
help="downsampling factor", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=1, | |
help="how many samples to produce for each given prompt. A.k.a. batch size", | |
) | |
parser.add_argument( | |
"--n_rows", | |
type=int, | |
default=0, | |
help="rows in the grid (default: n_samples)", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=7.5, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"--from-file", | |
type=str, | |
help="if specified, load prompts from this file", | |
) | |
parser.add_argument( | |
"--config", | |
type=str, | |
default="configs/stable-diffusion/v1-inference.yaml", | |
help="path to config which constructs model", | |
) | |
parser.add_argument( | |
"--sd_ckpt", | |
type=str, | |
default="stable_diffusion.ckpt", | |
help="path to checkpoint of stable diffusion model", | |
) | |
parser.add_argument( | |
"--grounding_ckpt", | |
type=str, | |
default="grounding_module.pth", | |
help="path to checkpoint of grounding module", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=42, | |
help="the seed (for reproducible sampling)", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
help="evaluate at this precision", | |
choices=["full", "autocast"], | |
default="autocast" | |
) | |
opt = parser.parse_args() | |
if opt.laion400m: | |
print("Falling back to LAION 400M model...") | |
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" | |
opt.ckpt = "models/ldm/text2img-large/model.ckpt" | |
opt.outdir = "outputs/txt2img-samples-laion400m" | |
seed_everything(opt.seed) | |
tic = time.time() | |
config = OmegaConf.load(f"{opt.config}") | |
model = load_model_from_config(config, f"{opt.sd_ckpt}") | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
toc = time.time() | |
seg_module=Segmodule().to(device) | |
seg_module.load_state_dict(torch.load(opt.grounding_ckpt, map_location="cpu"), strict=True) | |
print('load time:',toc-tic) | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
outpath = opt.outdir | |
batch_size = opt.n_samples | |
precision_scope = autocast if opt.precision=="autocast" else nullcontext | |
with torch.no_grad(): | |
with precision_scope("cuda"): | |
with model.ema_scope(): | |
prompt = opt.prompt | |
text = opt.category | |
trainclass = text | |
if not opt.from_file: | |
assert prompt is not None | |
data = [batch_size * [prompt]] | |
else: | |
print(f"reading prompts from {opt.from_file}") | |
with open(opt.from_file, "r") as f: | |
data = f.read().splitlines() | |
data = list(chunk(data, batch_size)) | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
start_code = None | |
if opt.fixed_code: | |
print('start_code') | |
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) | |
for n in trange(opt.n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
clear_feature_dic() | |
uc = None | |
if opt.scale != 1.0: | |
uc = model.get_learned_conditioning(batch_size * [""]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
c = model.get_learned_conditioning(prompts) | |
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] | |
samples_ddim,_, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta, | |
x_T=start_code) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
diffusion_features = get_feature_dic() | |
x_sample = torch.clamp((x_samples_ddim[0] + 1.0) / 2.0, min=0.0, max=1.0) | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
Image.fromarray(x_sample.astype(np.uint8)).save("demo/demo.png") | |
img = x_sample.astype(np.uint8) | |
class_name = trainclass | |
query_text ="a "+prompt.split()[1]+" of a "+class_name | |
c_split = model.cond_stage_model.tokenizer.tokenize(query_text) | |
sen_text_embedding = model.get_learned_conditioning(query_text) | |
class_embedding = sen_text_embedding[:, 5:len(c_split)+1, :] | |
if class_embedding.size()[1] > 1: | |
class_embedding = torch.unsqueeze(class_embedding.mean(1), 1) | |
text_embedding = class_embedding | |
text_embedding = text_embedding.repeat(batch_size, 1, 1) | |
pred_seg_total = seg_module(diffusion_features, text_embedding) | |
pred_seg = torch.unsqueeze(pred_seg_total[0,0,:,:], 0).unsqueeze(0) | |
label_pred_prob = torch.sigmoid(pred_seg) | |
label_pred_mask = torch.zeros_like(label_pred_prob, dtype=torch.float32) | |
label_pred_mask[label_pred_prob > 0.5] = 1 | |
annotation_pred = label_pred_mask[0][0].cpu() | |
mask = annotation_pred.numpy() | |
mask = np.expand_dims(mask, 0) | |
done_image_mask = plot_mask(img, mask, alpha=0.9, indexlist=[0]) | |
cv2.imwrite(os.path.join("demo/demo_mask.png"), done_image_mask) | |
torchvision.utils.save_image(annotation_pred, os.path.join("demo/demo_segresult.png"), normalize=True, scale_each=True) | |
if __name__ == "__main__": | |
main() | |