Spaces:
Runtime error
Runtime error
File size: 20,723 Bytes
f5c0c2f 0d2623f f5c0c2f 0d2623f 1840191 0d2623f f5c0c2f 0d2623f 8df5a70 0d2623f f5c0c2f 0d2623f f5c0c2f 0d2623f f5c0c2f 0d2623f f5c0c2f 0d2623f f5c0c2f 0d2623f f5c0c2f 8df5a70 8a3e99c 8df5a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import gradio as gr
import cv2
import torch
import numpy as np
from torchvision import transforms
# title = "Remove Bg"
# description = "Automatically remove the image background from a profile photo."
# article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
import argparse, os
import cv2
import torch
import numpy as np
import torchvision
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.diffusionmodules.openaimodel import clear_feature_dic,get_feature_dic
from ldm.models.seg_module import Segmodule
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def load_model_from_config(config, ckpt, verbose=False):
# print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
# m, u = model.load_state_dict(sd, strict=False)
# if len(m) > 0 and verbose:
# print("missing keys:")
# print(m)
# if len(u) > 0 and verbose:
# print("unexpected keys:")
# print(u)
model.cuda()
model.eval()
return model
def put_watermark(img, wm_encoder=None):
if wm_encoder is not None:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = wm_encoder.encode(img, 'dwtDct')
img = Image.fromarray(img[:, :, ::-1])
return img
def load_replacement(x):
try:
hwc = x.shape
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
y = (np.array(y)/255.0).astype(x.dtype)
assert y.shape == x.shape
return y
except Exception:
return x
def plot_mask(img, masks, colors=None, alpha=0.8,indexlist=[0,1]) -> np.ndarray:
H,W= masks.shape[0],masks.shape[1]
color_list=[[255,97,0],[128,42,42],[220,220,220],[255,153,18],[56,94,15],[127,255,212],[210,180,140],[221,160,221],[255,0,0],[255,128,0],[255,255,0],[128,255,0],[0,255,0],[0,255,128],[0,255,255],[0,128,255],[0,0,255],[128,0,255],[255,0,255],[255,0,128]]*6
final_color_list=[np.array([[i]*512]*512) for i in color_list]
background=np.ones(img.shape)*255
count=0
colors=final_color_list[indexlist[count]]
for mask, color in zip(masks, colors):
color=final_color_list[indexlist[count]]
mask = np.stack([mask, mask, mask], -1)
img = np.where(mask, img * (1 - alpha) + color * alpha,background*0.4+img*0.6 )
count+=1
return img.astype(np.uint8)
def create_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a photo of a lion on a mountain top at sunset",
help="the prompt to render"
)
parser.add_argument(
"--category",
type=str,
nargs="?",
default="lion",
help="the category to ground"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--laion400m",
action='store_true',
help="uses the LAION400M model",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--sd_ckpt",
type=str,
default="stable_diffusion.ckpt",
help="path to checkpoint of stable diffusion model",
)
parser.add_argument(
"--grounding_ckpt",
type=str,
default="grounding_module.pth",
help="path to checkpoint of grounding module",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
return opt
def inference(input_prompt, input_category):
opt = create_parser()
seed_everything(opt.seed)
tic = time.time()
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.sd_ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
toc = time.time()
seg_module=Segmodule().to(device)
seg_module.load_state_dict(torch.load(opt.grounding_ckpt, map_location="cpu"), strict=True)
# print('load time:',toc-tic)
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
batch_size = opt.n_samples
precision_scope = autocast if opt.precision=="autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
prompt = input_prompt
text = input_category
trainclass = text
if not opt.from_file:
assert prompt is not None
data = [batch_size * [prompt]]
else:
# print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
start_code = None
if opt.fixed_code:
# print('start_code')
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
clear_feature_dic()
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
diffusion_features = get_feature_dic()
x_sample = torch.clamp((x_samples_ddim[0] + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save("demo/demo.png")
img = x_sample.astype(np.uint8)
class_name = trainclass
query_text ="a photograph of a " + class_name
c_split = model.cond_stage_model.tokenizer.tokenize(query_text)
sen_text_embedding = model.get_learned_conditioning(query_text)
class_embedding = sen_text_embedding[:, 5:len(c_split)+1, :]
if class_embedding.size()[1] > 1:
class_embedding = torch.unsqueeze(class_embedding.mean(1), 1)
text_embedding = class_embedding
text_embedding = text_embedding.repeat(batch_size, 1, 1)
pred_seg_total = seg_module(diffusion_features, text_embedding)
pred_seg = torch.unsqueeze(pred_seg_total[0,0,:,:], 0).unsqueeze(0)
label_pred_prob = torch.sigmoid(pred_seg)
label_pred_mask = torch.zeros_like(label_pred_prob, dtype=torch.float32)
label_pred_mask[label_pred_prob > 0.5] = 1
annotation_pred = label_pred_mask[0][0].cpu()
mask = annotation_pred.numpy()
mask = np.expand_dims(mask, 0)
done_image_mask = plot_mask(img, mask, alpha=0.9, indexlist=[0])
# cv2.imwrite(os.path.join("demo/demo_mask.png"), done_image_mask)
# torchvision.utils.save_image(annotation_pred, os.path.join("demo/demo_segresult.png"), normalize=True, scale_each=True)
generated_image = x_sample
generated_mask = done_image_mask
return [generated_image, generated_mask]
# def make_transparent_foreground(pic, mask):
# # split the image into channels
# b, g, r = cv2.split(np.array(pic).astype('uint8'))
# # add an alpha channel with and fill all with transparent pixels (max 255)
# a = np.ones(mask.shape, dtype='uint8') * 255
# # merge the alpha channel back
# alpha_im = cv2.merge([b, g, r, a], 4)
# # create a transparent background
# bg = np.zeros(alpha_im.shape)
# # setup the new mask
# new_mask = np.stack([mask, mask, mask, mask], axis=2)
# # copy only the foreground color pixels from the original image where mask is set
# foreground = np.where(new_mask, alpha_im, bg).astype(np.uint8)
# return foreground
# def remove_background(input_image):
# preprocess = transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# ])
# input_tensor = preprocess(input_image)
# input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# # move the input and model to GPU for speed if available
# if torch.cuda.is_available():
# input_batch = input_batch.to('cuda')
# model.to('cuda')
# with torch.no_grad():
# output = model(input_batch)['out'][0]
# output_predictions = output.argmax(0)
# # create a binary (black and white) mask of the profile foreground
# mask = output_predictions.byte().cpu().numpy()
# background = np.zeros(mask.shape)
# bin_mask = np.where(mask, 255, background).astype(np.uint8)
# foreground = make_transparent_foreground(input_image, bin_mask)
# return foreground, bin_mask
# def inference(img):
# foreground, _ = remove_background(img)
# return foreground
# torch.hub.download_url_to_file('https://pbs.twimg.com/profile_images/691700243809718272/z7XZUARB_400x400.jpg',
# 'demis.jpg')
# torch.hub.download_url_to_file('https://hai.stanford.edu/sites/default/files/styles/person_medium/public/2020-03/hai_1512feifei.png?itok=INFuLABp',
# 'lifeifei.png')
# model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True)
# model.eval()
# gr.Interface(
# inference,
# gr.inputs.Textbox(label='Prompt', default='a photo of a lion on a mountain top at sunset'),
# gr.inputs.Textbox(label='category', default='lion'),
# gr.outputs.Image(type="pil", label="Output"),
# # title=title,
# # description=description,
# # article=article,
# # examples=[['demis.jpg'], ['lifeifei.png']],
# # enable_queue=True
# ).launch(debug=False)
def main():
# def load_example(
# steps: int,
# randomize_seed: bool,
# seed: int,
# randomize_cfg: bool,
# text_cfg_scale: float,
# image_cfg_scale: float,
# ):
# example_instruction = random.choice(example_instructions)
# return [example_image, example_instruction] + generate(
# example_image,
# example_instruction,
# steps,
# randomize_seed,
# seed,
# randomize_cfg,
# text_cfg_scale,
# image_cfg_scale,
# )
# def generate(
# input_image: Image.Image,
# instruction: str,
# steps: int,
# randomize_seed: bool,
# seed: int,
# randomize_cfg: bool,
# text_cfg_scale: float,
# image_cfg_scale: float,
# ):
# seed = random.randint(0, 100000) if randomize_seed else seed
# text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
# image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
# width, height = input_image.size
# factor = 512 / max(width, height)
# factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
# width = int((width * factor) // 64) * 64
# height = int((height * factor) // 64) * 64
# input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
# if instruction == "":
# return [input_image, seed]
# generator = torch.manual_seed(seed)
# edited_image = pipe(
# instruction, image=input_image,
# guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
# num_inference_steps=steps, generator=generator,
# ).images[0]
# return [seed, text_cfg_scale, image_cfg_scale, edited_image]
# def reset():
# return [0, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None]
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
InstructPix2Pix: Learning to Follow Image Editing Instructions
</h1>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/timbrooks/instruct-pix2pix?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
with gr.Row():
# with gr.Column(scale=1, min_width=100):
# load_button = gr.Button("Load Example")
# with gr.Column(scale=1, min_width=100):
# reset_button = gr.Button("Reset")
with gr.Column(scale=3):
Prompt = gr.Textbox(lines=1, label="Prompt", interactive=True)
with gr.Column(scale=2):
Category = gr.Textbox(lines=1, label="Category", interactive=True)
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
with gr.Row():
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generated_mask = gr.Image(label=f"Generated Mask", type="pil", interactive=False)
generated_image.style(height=512, width=512)
generated_mask.style(height=512, width=512)
# with gr.Row():
# steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
# randomize_seed = gr.Radio(
# ["Fix Seed", "Randomize Seed"],
# value="Randomize Seed",
# type="index",
# show_label=False,
# interactive=True,
# )
# seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
# randomize_cfg = gr.Radio(
# ["Fix CFG", "Randomize CFG"],
# value="Fix CFG",
# type="index",
# show_label=False,
# interactive=True,
# )
# text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
# image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
# gr.Markdown(help_text)
# load_button.click(
# fn=load_example,
# inputs=[
# steps,
# randomize_seed,
# seed,
# randomize_cfg,
# text_cfg_scale,
# image_cfg_scale,
# ],
# outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
# )
generate_button.click(
fn=inference,
inputs=[
Prompt,
Category,
],
outputs=[generated_image, generated_mask],
)
# reset_button.click(
# fn=reset,
# inputs=[],
# outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, edited_image],
# )
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main() |