File size: 20,723 Bytes
f5c0c2f
 
 
 
 
 
0d2623f
 
 
f5c0c2f
0d2623f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840191
0d2623f
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c0c2f
0d2623f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df5a70
 
 
0d2623f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c0c2f
0d2623f
 
 
 
f5c0c2f
0d2623f
f5c0c2f
0d2623f
f5c0c2f
 
0d2623f
 
 
f5c0c2f
 
0d2623f
 
 
 
 
 
f5c0c2f
8df5a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3e99c
8df5a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import gradio as gr
import cv2
import torch
import numpy as np
from torchvision import transforms

# title = "Remove Bg"
# description = "Automatically remove the image background from a profile photo."
# article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"

import argparse, os
import cv2
import torch
import numpy as np
import torchvision
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext

from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.diffusionmodules.openaimodel import clear_feature_dic,get_feature_dic
from ldm.models.seg_module import Segmodule

import numpy as np

os.environ["CUDA_VISIBLE_DEVICES"] = "1"

def chunk(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())


def numpy_to_pil(images):
    """
    Convert a numpy image or a batch of images to a PIL image.
    """
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]

    return pil_images


def load_model_from_config(config, ckpt, verbose=False):
    # print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    # m, u = model.load_state_dict(sd, strict=False)
    # if len(m) > 0 and verbose:
        # print("missing keys:")
        # print(m)
    # if len(u) > 0 and verbose:
        # print("unexpected keys:")
        # print(u)

    model.cuda()
    model.eval()
    return model


def put_watermark(img, wm_encoder=None):
    if wm_encoder is not None:
        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        img = wm_encoder.encode(img, 'dwtDct')
        img = Image.fromarray(img[:, :, ::-1])
    return img


def load_replacement(x):
    try:
        hwc = x.shape
        y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
        y = (np.array(y)/255.0).astype(x.dtype)
        assert y.shape == x.shape
        return y
    except Exception:
        return x

def plot_mask(img, masks, colors=None, alpha=0.8,indexlist=[0,1]) -> np.ndarray:
    H,W= masks.shape[0],masks.shape[1]
    color_list=[[255,97,0],[128,42,42],[220,220,220],[255,153,18],[56,94,15],[127,255,212],[210,180,140],[221,160,221],[255,0,0],[255,128,0],[255,255,0],[128,255,0],[0,255,0],[0,255,128],[0,255,255],[0,128,255],[0,0,255],[128,0,255],[255,0,255],[255,0,128]]*6
    final_color_list=[np.array([[i]*512]*512) for i in color_list]
    
    background=np.ones(img.shape)*255
    count=0
    colors=final_color_list[indexlist[count]]
    for mask, color in zip(masks, colors):
        color=final_color_list[indexlist[count]]
        mask = np.stack([mask, mask, mask], -1)
        img = np.where(mask, img * (1 - alpha) + color * alpha,background*0.4+img*0.6 )
        count+=1
    return img.astype(np.uint8)

def create_parser():

    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--prompt",
        type=str,
        nargs="?",
        default="a photo of a lion on a mountain top at sunset",
        help="the prompt to render"
    )
    parser.add_argument(
        "--category",
        type=str,
        nargs="?",
        default="lion",
        help="the category to ground"
    )
    parser.add_argument(
        "--outdir",
        type=str,
        nargs="?",
        help="dir to write results to",
        default="outputs/txt2img-samples"
    )
    parser.add_argument(
        "--skip_grid",
        action='store_true',
        help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
    )
    parser.add_argument(
        "--skip_save",
        action='store_true',
        help="do not save individual samples. For speed measurements.",
    )
    parser.add_argument(
        "--ddim_steps",
        type=int,
        default=50,
        help="number of ddim sampling steps",
    )
    parser.add_argument(
        "--plms",
        action='store_true',
        help="use plms sampling",
    )
    parser.add_argument(
        "--laion400m",
        action='store_true',
        help="uses the LAION400M model",
    )
    parser.add_argument(
        "--fixed_code",
        action='store_true',
        help="if enabled, uses the same starting code across samples ",
    )
    parser.add_argument(
        "--ddim_eta",
        type=float,
        default=0.0,
        help="ddim eta (eta=0.0 corresponds to deterministic sampling",
    )
    parser.add_argument(
        "--n_iter",
        type=int,
        default=1,
        help="sample this often",
    )
    parser.add_argument(
        "--H",
        type=int,
        default=512,
        help="image height, in pixel space",
    )
    parser.add_argument(
        "--W",
        type=int,
        default=512,
        help="image width, in pixel space",
    )
    parser.add_argument(
        "--C",
        type=int,
        default=4,
        help="latent channels",
    )
    parser.add_argument(
        "--f",
        type=int,
        default=8,
        help="downsampling factor",
    )
    parser.add_argument(
        "--n_samples",
        type=int,
        default=1,
        help="how many samples to produce for each given prompt. A.k.a. batch size",
    )
    parser.add_argument(
        "--n_rows",
        type=int,
        default=0,
        help="rows in the grid (default: n_samples)",
    )
    parser.add_argument(
        "--scale",
        type=float,
        default=7.5,
        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
    )
    parser.add_argument(
        "--from-file",
        type=str,
        help="if specified, load prompts from this file",
    )
    parser.add_argument(
        "--config",
        type=str,
        default="configs/stable-diffusion/v1-inference.yaml",
        help="path to config which constructs model",
    )
    parser.add_argument(
        "--sd_ckpt",
        type=str,
        default="stable_diffusion.ckpt",
        help="path to checkpoint of stable diffusion model",
    )
    parser.add_argument(
        "--grounding_ckpt",
        type=str,
        default="grounding_module.pth",
        help="path to checkpoint of grounding module",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="the seed (for reproducible sampling)",
    )
    parser.add_argument(
        "--precision",
        type=str,
        help="evaluate at this precision",
        choices=["full", "autocast"],
        default="autocast"
    )
    opt = parser.parse_args()
    
    return opt


def inference(input_prompt, input_category):

    opt = create_parser()

    seed_everything(opt.seed)
    
    tic = time.time()
    config = OmegaConf.load(f"{opt.config}")
    model = load_model_from_config(config, f"{opt.sd_ckpt}")
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    toc = time.time()
    seg_module=Segmodule().to(device)
        
    seg_module.load_state_dict(torch.load(opt.grounding_ckpt, map_location="cpu"), strict=True)
    # print('load time:',toc-tic)
    sampler = DDIMSampler(model)

    os.makedirs(opt.outdir, exist_ok=True)
    outpath = opt.outdir
    batch_size = opt.n_samples
    precision_scope = autocast if opt.precision=="autocast" else nullcontext
    with torch.no_grad():
        with precision_scope("cuda"):
            with model.ema_scope():
                prompt = input_prompt
                text = input_category
                trainclass = text
                if not opt.from_file:
                    assert prompt is not None
                    data = [batch_size * [prompt]]

                else:
                    # print(f"reading prompts from {opt.from_file}")
                    with open(opt.from_file, "r") as f:
                        data = f.read().splitlines()
                        data = list(chunk(data, batch_size))

                sample_path = os.path.join(outpath, "samples")
                os.makedirs(sample_path, exist_ok=True)

                start_code = None
                if opt.fixed_code:
                    # print('start_code')
                    start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
                for n in trange(opt.n_iter, desc="Sampling"):
                    for prompts in tqdm(data, desc="data"):
                        clear_feature_dic()
                        uc = None
                        if opt.scale != 1.0:
                            uc = model.get_learned_conditioning(batch_size * [""])
                        if isinstance(prompts, tuple):
                            prompts = list(prompts)
                        
                        c = model.get_learned_conditioning(prompts)
                        shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
                        samples_ddim, _, _ = sampler.sample(S=opt.ddim_steps,
                                                        conditioning=c,
                                                        batch_size=opt.n_samples,
                                                        shape=shape,
                                                        verbose=False,
                                                        unconditional_guidance_scale=opt.scale,
                                                        unconditional_conditioning=uc,
                                                        eta=opt.ddim_eta,
                                                        x_T=start_code)

                        x_samples_ddim = model.decode_first_stage(samples_ddim)
                        diffusion_features = get_feature_dic()
                
                        
                        x_sample = torch.clamp((x_samples_ddim[0] + 1.0) / 2.0, min=0.0, max=1.0)
                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                        
                        Image.fromarray(x_sample.astype(np.uint8)).save("demo/demo.png")    
                        img = x_sample.astype(np.uint8)
                        
                        class_name = trainclass
                        
                        query_text ="a photograph of a " + class_name
                        c_split = model.cond_stage_model.tokenizer.tokenize(query_text)
                        
                        sen_text_embedding = model.get_learned_conditioning(query_text)
                        class_embedding = sen_text_embedding[:, 5:len(c_split)+1, :]
                        
                        if class_embedding.size()[1] > 1:
                            class_embedding = torch.unsqueeze(class_embedding.mean(1), 1)
                        text_embedding = class_embedding
                    
                        text_embedding = text_embedding.repeat(batch_size, 1, 1)
                        
                                    
                        pred_seg_total = seg_module(diffusion_features, text_embedding)
                    
                        
                        pred_seg = torch.unsqueeze(pred_seg_total[0,0,:,:], 0).unsqueeze(0)
                            
                        label_pred_prob = torch.sigmoid(pred_seg)
                        label_pred_mask = torch.zeros_like(label_pred_prob, dtype=torch.float32)
                        label_pred_mask[label_pred_prob > 0.5] = 1
                        annotation_pred = label_pred_mask[0][0].cpu()
                        
                        mask = annotation_pred.numpy()
                        mask = np.expand_dims(mask, 0)
                        done_image_mask = plot_mask(img, mask, alpha=0.9, indexlist=[0])
                        # cv2.imwrite(os.path.join("demo/demo_mask.png"), done_image_mask)
                        
                        # torchvision.utils.save_image(annotation_pred, os.path.join("demo/demo_segresult.png"), normalize=True, scale_each=True)
                        generated_image = x_sample
                        generated_mask = done_image_mask
                        return [generated_image, generated_mask]


# def make_transparent_foreground(pic, mask):
#     # split the image into channels
#     b, g, r = cv2.split(np.array(pic).astype('uint8'))
#     # add an alpha channel with and fill all with transparent pixels (max 255)
#     a = np.ones(mask.shape, dtype='uint8') * 255
#     # merge the alpha channel back
#     alpha_im = cv2.merge([b, g, r, a], 4)
#     # create a transparent background
#     bg = np.zeros(alpha_im.shape)
#     # setup the new mask
#     new_mask = np.stack([mask, mask, mask, mask], axis=2)
#     # copy only the foreground color pixels from the original image where mask is set
#     foreground = np.where(new_mask, alpha_im, bg).astype(np.uint8)

#     return foreground


# def remove_background(input_image):
#     preprocess = transforms.Compose([
#         transforms.ToTensor(),
#         transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
#     ])

#     input_tensor = preprocess(input_image)
#     input_batch = input_tensor.unsqueeze(0)  # create a mini-batch as expected by the model

#     # move the input and model to GPU for speed if available
#     if torch.cuda.is_available():
#         input_batch = input_batch.to('cuda')
#         model.to('cuda')

#     with torch.no_grad():
#         output = model(input_batch)['out'][0]
#     output_predictions = output.argmax(0)

#     # create a binary (black and white) mask of the profile foreground
#     mask = output_predictions.byte().cpu().numpy()
#     background = np.zeros(mask.shape)
#     bin_mask = np.where(mask, 255, background).astype(np.uint8)

#     foreground = make_transparent_foreground(input_image, bin_mask)

#     return foreground, bin_mask


# def inference(img):
#     foreground, _ = remove_background(img)
#     return foreground


# torch.hub.download_url_to_file('https://pbs.twimg.com/profile_images/691700243809718272/z7XZUARB_400x400.jpg',
#                                'demis.jpg')
# torch.hub.download_url_to_file('https://hai.stanford.edu/sites/default/files/styles/person_medium/public/2020-03/hai_1512feifei.png?itok=INFuLABp',
#                                'lifeifei.png')
# model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True)
# model.eval()

# gr.Interface(
#     inference,
#     gr.inputs.Textbox(label='Prompt', default='a photo of a lion on a mountain top at sunset'),
#     gr.inputs.Textbox(label='category', default='lion'),
#     gr.outputs.Image(type="pil", label="Output"),
#     # title=title,
#     # description=description,
#     # article=article,
#     # examples=[['demis.jpg'], ['lifeifei.png']],
#     # enable_queue=True
# ).launch(debug=False)

def main():

    # def load_example(
    #     steps: int,
    #     randomize_seed: bool,
    #     seed: int,
    #     randomize_cfg: bool,
    #     text_cfg_scale: float,
    #     image_cfg_scale: float,
    # ):
    #     example_instruction = random.choice(example_instructions)
    #     return [example_image, example_instruction] + generate(
    #         example_image,
    #         example_instruction,
    #         steps,
    #         randomize_seed,
    #         seed,
    #         randomize_cfg,
    #         text_cfg_scale,
    #         image_cfg_scale,
    #     )

    # def generate(
    #     input_image: Image.Image,
    #     instruction: str,
    #     steps: int,
    #     randomize_seed: bool,
    #     seed: int,
    #     randomize_cfg: bool,
    #     text_cfg_scale: float,
    #     image_cfg_scale: float,
    # ):
    #     seed = random.randint(0, 100000) if randomize_seed else seed
    #     text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
    #     image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale

    #     width, height = input_image.size
    #     factor = 512 / max(width, height)
    #     factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
    #     width = int((width * factor) // 64) * 64
    #     height = int((height * factor) // 64) * 64
    #     input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)

    #     if instruction == "":
    #         return [input_image, seed]

    #     generator = torch.manual_seed(seed)
    #     edited_image = pipe(
    #         instruction, image=input_image,
    #         guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
    #         num_inference_steps=steps, generator=generator,
    #     ).images[0]
    #     return [seed, text_cfg_scale, image_cfg_scale, edited_image]

    # def reset():
    #     return [0, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None]

    with gr.Blocks() as demo:
        gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
   InstructPix2Pix: Learning to Follow Image Editing Instructions
</h1>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/timbrooks/instruct-pix2pix?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
        with gr.Row():
            # with gr.Column(scale=1, min_width=100):
            #     load_button = gr.Button("Load Example")
            # with gr.Column(scale=1, min_width=100):
            #     reset_button = gr.Button("Reset")
            with gr.Column(scale=3):
                Prompt = gr.Textbox(lines=1, label="Prompt", interactive=True)
            with gr.Column(scale=2):
                Category = gr.Textbox(lines=1, label="Category", interactive=True)
            with gr.Column(scale=1, min_width=100):
                generate_button = gr.Button("Generate")

        with gr.Row():
            generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
            generated_mask = gr.Image(label=f"Generated Mask", type="pil", interactive=False)
            generated_image.style(height=512, width=512)
            generated_mask.style(height=512, width=512)

        # with gr.Row():
        #     steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
        #     randomize_seed = gr.Radio(
        #         ["Fix Seed", "Randomize Seed"],
        #         value="Randomize Seed",
        #         type="index",
        #         show_label=False,
        #         interactive=True,
        #     )
        #     seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
        #     randomize_cfg = gr.Radio(
        #         ["Fix CFG", "Randomize CFG"],
        #         value="Fix CFG",
        #         type="index",
        #         show_label=False,
        #         interactive=True,
        #     )
        #     text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
        #     image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)

        # gr.Markdown(help_text)

        # load_button.click(
        #     fn=load_example,
        #     inputs=[
        #         steps,
        #         randomize_seed,
        #         seed,
        #         randomize_cfg,
        #         text_cfg_scale,
        #         image_cfg_scale,
        #     ],
        #     outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
        # )
        generate_button.click(
            fn=inference,
            inputs=[
                Prompt,
                Category,
            ],
            outputs=[generated_image, generated_mask],
        )
        # reset_button.click(
        #     fn=reset,
        #     inputs=[],
        #     outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, edited_image],
        # )

    demo.queue(concurrency_count=1)
    demo.launch(share=False)



if __name__ == "__main__":
    main()