File size: 11,336 Bytes
e0f66ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import typing as tp

import flashy
import julius
import omegaconf
import torch
import torch.nn.functional as F

from . import builders
from . import base
from .. import models
from ..modules.diffusion_schedule import NoiseSchedule
from ..metrics import RelativeVolumeMel
from ..models.builders import get_processor
from ..utils.samples.manager import SampleManager
from ..solvers.compression import CompressionSolver


class PerStageMetrics:
    """Handle prompting the metrics per stage.
    It outputs the metrics per range of diffusion states.
    e.g. avg loss when t in [250, 500]
    """
    def __init__(self, num_steps: int, num_stages: int = 4):
        self.num_steps = num_steps
        self.num_stages = num_stages

    def __call__(self, losses: dict, step: tp.Union[int, torch.Tensor]):
        if type(step) is int:
            stage = int((step / self.num_steps) * self.num_stages)
            return {f"{name}_{stage}": loss for name, loss in losses.items()}
        elif type(step) is torch.Tensor:
            stage_tensor = ((step / self.num_steps) * self.num_stages).long()
            out: tp.Dict[str, float] = {}
            for stage_idx in range(self.num_stages):
                mask = (stage_tensor == stage_idx)
                N = mask.sum()
                stage_out = {}
                if N > 0:  # pass if no elements in the stage
                    for name, loss in losses.items():
                        stage_loss = (mask * loss).sum() / N
                        stage_out[f"{name}_{stage_idx}"] = stage_loss
                out = {**out, **stage_out}
            return out


class DataProcess:
    """Apply filtering or resampling.

    Args:
        initial_sr (int): Initial sample rate.
        target_sr (int): Target sample rate.
        use_resampling: Whether to use resampling or not.
        use_filter (bool):
        n_bands (int): Number of bands to consider.
        idx_band (int):
        device (torch.device or str):
        cutoffs ():
        boost (bool):
    """
    def __init__(self, initial_sr: int = 24000, target_sr: int = 16000, use_resampling: bool = False,
                 use_filter: bool = False, n_bands: int = 4,
                 idx_band: int = 0, device: torch.device = torch.device('cpu'), cutoffs=None, boost=False):
        """Apply filtering or resampling
        Args:
            initial_sr (int): sample rate of the dataset
            target_sr (int): sample rate after resampling
            use_resampling (bool): whether or not performs resampling
            use_filter (bool): when True filter the data to keep only one frequency band
            n_bands (int): Number of bands used
            cuts (none or list): The cutoff frequencies of the band filtering
                                if None then we use mel scale bands.
            idx_band (int): index of the frequency band. 0 are lows ... (n_bands - 1) highs
            boost (bool): make the data scale match our music dataset.
        """
        assert idx_band < n_bands
        self.idx_band = idx_band
        if use_filter:
            if cutoffs is not None:
                self.filter = julius.SplitBands(sample_rate=initial_sr, cutoffs=cutoffs).to(device)
            else:
                self.filter = julius.SplitBands(sample_rate=initial_sr, n_bands=n_bands).to(device)
        self.use_filter = use_filter
        self.use_resampling = use_resampling
        self.target_sr = target_sr
        self.initial_sr = initial_sr
        self.boost = boost

    def process_data(self, x, metric=False):
        if x is None:
            return None
        if self.boost:
            x /= torch.clamp(x.std(dim=(1, 2), keepdim=True), min=1e-4)
            x * 0.22
        if self.use_filter and not metric:
            x = self.filter(x)[self.idx_band]
        if self.use_resampling:
            x = julius.resample_frac(x, old_sr=self.initial_sr, new_sr=self.target_sr)
        return x

    def inverse_process(self, x):
        """Upsampling only."""
        if self.use_resampling:
            x = julius.resample_frac(x, old_sr=self.target_sr, new_sr=self.target_sr)
        return x


class DiffusionSolver(base.StandardSolver):
    """Solver for compression task.

    The diffusion task allows for MultiBand diffusion model training.

    Args:
        cfg (DictConfig): Configuration.
    """
    def __init__(self, cfg: omegaconf.DictConfig):
        super().__init__(cfg)
        self.cfg = cfg
        self.device = cfg.device
        self.sample_rate: int = self.cfg.sample_rate
        self.codec_model = CompressionSolver.model_from_checkpoint(
            cfg.compression_model_checkpoint, device=self.device)

        self.codec_model.set_num_codebooks(cfg.n_q)
        assert self.codec_model.sample_rate == self.cfg.sample_rate, (
            f"Codec model sample rate is {self.codec_model.sample_rate} but "
            f"Solver sample rate is {self.cfg.sample_rate}."
            )
        assert self.codec_model.sample_rate == self.sample_rate, \
            f"Sample rate of solver {self.sample_rate} and codec {self.codec_model.sample_rate} " \
            "don't match."

        self.sample_processor = get_processor(cfg.processor, sample_rate=self.sample_rate)
        self.register_stateful('sample_processor')
        self.sample_processor.to(self.device)

        self.schedule = NoiseSchedule(
            **cfg.schedule, device=self.device, sample_processor=self.sample_processor)

        self.eval_metric: tp.Optional[torch.nn.Module] = None

        self.rvm = RelativeVolumeMel()
        self.data_processor = DataProcess(initial_sr=self.sample_rate, target_sr=cfg.resampling.target_sr,
                                          use_resampling=cfg.resampling.use, cutoffs=cfg.filter.cutoffs,
                                          use_filter=cfg.filter.use, n_bands=cfg.filter.n_bands,
                                          idx_band=cfg.filter.idx_band, device=self.device)

    @property
    def best_metric_name(self) -> tp.Optional[str]:
        if self._current_stage == "evaluate":
            return 'rvm'
        else:
            return 'loss'

    @torch.no_grad()
    def get_condition(self, wav: torch.Tensor) -> torch.Tensor:
        codes, scale = self.codec_model.encode(wav)
        assert scale is None, "Scaled compression models not supported."
        emb = self.codec_model.decode_latent(codes)
        return emb

    def build_model(self):
        """Build model and optimizer as well as optional Exponential Moving Average of the model.
        """
        # Model and optimizer
        self.model = models.builders.get_diffusion_model(self.cfg).to(self.device)
        self.optimizer = builders.get_optimizer(self.model.parameters(), self.cfg.optim)
        self.register_stateful('model', 'optimizer')
        self.register_best_state('model')
        self.register_ema('model')

    def build_dataloaders(self):
        """Build audio dataloaders for each stage."""
        self.dataloaders = builders.get_audio_datasets(self.cfg)

    def show(self):
        # TODO
        raise NotImplementedError()

    def run_step(self, idx: int, batch: torch.Tensor, metrics: dict):
        """Perform one training or valid step on a given batch."""
        x = batch.to(self.device)
        loss_fun = F.mse_loss if self.cfg.loss.kind == 'mse' else F.l1_loss

        condition = self.get_condition(x)  # [bs, 128, T/hop, n_emb]
        sample = self.data_processor.process_data(x)

        input_, target, step = self.schedule.get_training_item(sample,
                                                               tensor_step=self.cfg.schedule.variable_step_batch)
        out = self.model(input_, step, condition=condition).sample

        base_loss = loss_fun(out, target, reduction='none').mean(dim=(1, 2))
        reference_loss = loss_fun(input_, target, reduction='none').mean(dim=(1, 2))
        loss = base_loss / reference_loss ** self.cfg.loss.norm_power

        if self.is_training:
            loss.mean().backward()
            flashy.distrib.sync_model(self.model)
            self.optimizer.step()
            self.optimizer.zero_grad()
        metrics = {
            'loss': loss.mean(), 'normed_loss': (base_loss / reference_loss).mean(),
            }
        metrics.update(self.per_stage({'loss': loss, 'normed_loss': base_loss / reference_loss}, step))
        metrics.update({
            'std_in': input_.std(), 'std_out': out.std()})
        return metrics

    def run_epoch(self):
        # reset random seed at the beginning of the epoch
        self.rng = torch.Generator()
        self.rng.manual_seed(1234 + self.epoch)
        self.per_stage = PerStageMetrics(self.schedule.num_steps, self.cfg.metrics.num_stage)
        # run epoch
        super().run_epoch()

    def evaluate(self):
        """Evaluate stage.
        Runs audio reconstruction evaluation.
        """
        self.model.eval()
        evaluate_stage_name = f'{self.current_stage}'
        loader = self.dataloaders['evaluate']
        updates = len(loader)
        lp = self.log_progress(f'{evaluate_stage_name} estimate', loader, total=updates, updates=self.log_updates)

        metrics = {}
        n = 1
        for idx, batch in enumerate(lp):
            x = batch.to(self.device)
            with torch.no_grad():
                y_pred = self.regenerate(x)

            y_pred = y_pred.cpu()
            y = batch.cpu()  # should already be on CPU but just in case
            rvm = self.rvm(y_pred, y)
            lp.update(**rvm)
            if len(metrics) == 0:
                metrics = rvm
            else:
                for key in rvm.keys():
                    metrics[key] = (metrics[key] * n + rvm[key]) / (n + 1)
        metrics = flashy.distrib.average_metrics(metrics)
        return metrics

    @torch.no_grad()
    def regenerate(self, wav: torch.Tensor, step_list: tp.Optional[list] = None):
        """Regenerate the given waveform."""
        condition = self.get_condition(wav)
        initial = self.schedule.get_initial_noise(self.data_processor.process_data(wav))  # sampling rate changes.
        result = self.schedule.generate_subsampled(self.model, initial=initial, condition=condition,
                                                   step_list=step_list)
        result = self.data_processor.inverse_process(result)
        return result

    def generate(self):
        """Generate stage."""
        sample_manager = SampleManager(self.xp)
        self.model.eval()
        generate_stage_name = f'{self.current_stage}'

        loader = self.dataloaders['generate']
        updates = len(loader)
        lp = self.log_progress(generate_stage_name, loader, total=updates, updates=self.log_updates)

        for batch in lp:
            reference, _ = batch
            reference = reference.to(self.device)
            estimate = self.regenerate(reference)
            reference = reference.cpu()
            estimate = estimate.cpu()
            sample_manager.add_samples(estimate, self.epoch, ground_truth_wavs=reference)
        flashy.distrib.barrier()