File size: 3,023 Bytes
e0f66ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import typing as tp

from einops import rearrange
from librosa import filters
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio


class ChromaExtractor(nn.Module):
    """Chroma extraction and quantization.

    Args:
        sample_rate (int): Sample rate for the chroma extraction.
        n_chroma (int): Number of chroma bins for the chroma extraction.
        radix2_exp (int): Size of stft window for the chroma extraction (power of 2, e.g. 12 -> 2^12).
        nfft (int, optional): Number of FFT.
        winlen (int, optional): Window length.
        winhop (int, optional): Window hop size.
        argmax (bool, optional): Whether to use argmax. Defaults to False.
        norm (float, optional): Norm for chroma normalization. Defaults to inf.
    """
    def __init__(self, sample_rate: int, n_chroma: int = 12, radix2_exp: int = 12, nfft: tp.Optional[int] = None,
                 winlen: tp.Optional[int] = None, winhop: tp.Optional[int] = None, argmax: bool = False,
                 norm: float = torch.inf):
        super().__init__()
        self.winlen = winlen or 2 ** radix2_exp
        self.nfft = nfft or self.winlen
        self.winhop = winhop or (self.winlen // 4)
        self.sample_rate = sample_rate
        self.n_chroma = n_chroma
        self.norm = norm
        self.argmax = argmax
        self.register_buffer('fbanks', torch.from_numpy(filters.chroma(sr=sample_rate, n_fft=self.nfft, tuning=0,
                                                                       n_chroma=self.n_chroma)), persistent=False)
        self.spec = torchaudio.transforms.Spectrogram(n_fft=self.nfft, win_length=self.winlen,
                                                      hop_length=self.winhop, power=2, center=True,
                                                      pad=0, normalized=True)

    def forward(self, wav: torch.Tensor) -> torch.Tensor:
        T = wav.shape[-1]
        # in case we are getting a wav that was dropped out (nullified)
        # from the conditioner, make sure wav length is no less that nfft
        if T < self.nfft:
            pad = self.nfft - T
            r = 0 if pad % 2 == 0 else 1
            wav = F.pad(wav, (pad // 2, pad // 2 + r), 'constant', 0)
            assert wav.shape[-1] == self.nfft, f"expected len {self.nfft} but got {wav.shape[-1]}"

        spec = self.spec(wav).squeeze(1)
        raw_chroma = torch.einsum('cf,...ft->...ct', self.fbanks, spec)
        norm_chroma = torch.nn.functional.normalize(raw_chroma, p=self.norm, dim=-2, eps=1e-6)
        norm_chroma = rearrange(norm_chroma, 'b d t -> b t d')

        if self.argmax:
            idx = norm_chroma.argmax(-1, keepdim=True)
            norm_chroma[:] = 0
            norm_chroma.scatter_(dim=-1, index=idx, value=1)

        return norm_chroma