Spaces:
Running
Running
Prgckwb
commited on
Commit
•
90deeeb
1
Parent(s):
eef5127
:art: Improve structure
Browse files- app.py +2 -119
- src/const.py +18 -0
- src/inference.py +119 -0
app.py
CHANGED
@@ -1,125 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from compel import Compel, DiffusersTextualInversionManager
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
from diffusers.utils import make_image_grid
|
8 |
|
|
|
9 |
from src.example import EXAMPLES
|
10 |
-
|
11 |
-
DIFFUSERS_MODEL_IDS = [
|
12 |
-
# SD Models
|
13 |
-
"stabilityai/stable-diffusion-3-medium-diffusers",
|
14 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
15 |
-
"stabilityai/stable-diffusion-2-1",
|
16 |
-
"runwayml/stable-diffusion-v1-5",
|
17 |
-
|
18 |
-
# Other Models
|
19 |
-
"Prgckwb/trpfrog-diffusion",
|
20 |
-
]
|
21 |
-
EXTERNAL_MODEL_MAPPING = {
|
22 |
-
"Beautiful Realistic Asians": "checkpoints/diffusers/Beautiful Realistic Asians v7",
|
23 |
-
}
|
24 |
-
MODEL_CHOICES = DIFFUSERS_MODEL_IDS + list(EXTERNAL_MODEL_MAPPING.keys())
|
25 |
-
|
26 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
-
|
28 |
-
|
29 |
-
def load_pipeline(model_id, use_model_offload, safety_checker):
|
30 |
-
# Diffusers リポジトリ内のモデル
|
31 |
-
if model_id in DIFFUSERS_MODEL_IDS:
|
32 |
-
pipe = DiffusionPipeline.from_pretrained(
|
33 |
-
model_id,
|
34 |
-
torch_dtype=torch.float16,
|
35 |
-
)
|
36 |
-
|
37 |
-
# CIVITAI 系列由来のモデル
|
38 |
-
else:
|
39 |
-
pipe = DiffusionPipeline.from_pretrained(
|
40 |
-
EXTERNAL_MODEL_MAPPING[model_id],
|
41 |
-
torch_dtype=torch.float16,
|
42 |
-
)
|
43 |
-
|
44 |
-
# Load Textual Inversion
|
45 |
-
pipe.load_textual_inversion("checkpoints/embeddings/BadNegAnatomyV1 neg.pt", token='BadNegAnatomyV1-neg')
|
46 |
-
pipe.load_textual_inversion("checkpoints/embeddings/Deep Negative V1 75T.pt", token='DeepNegative')
|
47 |
-
pipe.load_textual_inversion("checkpoints/embeddings/easynegative.safetensors", token='EasyNegative')
|
48 |
-
pipe.load_textual_inversion("checkpoints/embeddings/Negative Hand Embedding.pt", token='negative_hand-neg')
|
49 |
-
|
50 |
-
# Load LoRA
|
51 |
-
pipe.load_lora_weights("checkpoints/lora/detailed style SD1.5.safetensors", adapter_name='detail')
|
52 |
-
pipe.load_lora_weights("checkpoints/lora/perfection style SD1.5.safetensors", adapter_name='perfection')
|
53 |
-
pipe.load_lora_weights("checkpoints/lora/Hand v3 SD1.5.safetensors", adapter_name='hands')
|
54 |
-
pipe.set_adapters(['detail', 'hands'], adapter_weights=[0.5, 0.5])
|
55 |
-
|
56 |
-
# VRAM が少ないとき用の対策
|
57 |
-
if use_model_offload:
|
58 |
-
pipe.enable_model_cpu_offload()
|
59 |
-
else:
|
60 |
-
pipe = pipe.to(device)
|
61 |
-
|
62 |
-
if not safety_checker:
|
63 |
-
pipe.safety_checker = None
|
64 |
-
|
65 |
-
return pipe
|
66 |
-
|
67 |
-
|
68 |
-
@spaces.GPU(duration=120)
|
69 |
-
@torch.inference_mode()
|
70 |
-
def inference(
|
71 |
-
prompt: str,
|
72 |
-
model_id: str = "stabilityai/stable-diffusion-3-medium-diffusers",
|
73 |
-
negative_prompt: str = "",
|
74 |
-
width: int = 512,
|
75 |
-
height: int = 512,
|
76 |
-
guidance_scale: float = 7.5,
|
77 |
-
num_inference_steps: int = 50,
|
78 |
-
num_images: int = 4,
|
79 |
-
safety_checker: bool = True,
|
80 |
-
use_model_offload: bool = False,
|
81 |
-
seed: int = 8888,
|
82 |
-
progress=gr.Progress(track_tqdm=True),
|
83 |
-
) -> Image.Image:
|
84 |
-
progress(0, 'Loading pipeline...')
|
85 |
-
pipe = load_pipeline(model_id, use_model_offload, safety_checker)
|
86 |
-
|
87 |
-
# For Compel
|
88 |
-
textual_inversion_manager = DiffusersTextualInversionManager(pipe)
|
89 |
-
compel_procs = Compel(
|
90 |
-
tokenizer=pipe.tokenizer,
|
91 |
-
text_encoder=pipe.text_encoder,
|
92 |
-
textual_inversion_manager=textual_inversion_manager,
|
93 |
-
truncate_long_prompts=False,
|
94 |
-
)
|
95 |
-
prompt_embed = compel_procs(prompt)
|
96 |
-
negative_prompt_embed = compel_procs(negative_prompt)
|
97 |
-
|
98 |
-
prompt_embed, negative_prompt_embed = compel_procs.pad_conditioning_tensors_to_same_length(
|
99 |
-
[prompt_embed, negative_prompt_embed]
|
100 |
-
)
|
101 |
-
|
102 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
103 |
-
|
104 |
-
progress(0.3, 'Generating images...')
|
105 |
-
images = pipe(
|
106 |
-
prompt_embeds=prompt_embed,
|
107 |
-
negative_prompt_embeds=negative_prompt_embed,
|
108 |
-
width=width,
|
109 |
-
height=height,
|
110 |
-
guidance_scale=guidance_scale,
|
111 |
-
num_inference_steps=num_inference_steps,
|
112 |
-
num_images_per_prompt=num_images,
|
113 |
-
generator=generator,
|
114 |
-
).images
|
115 |
-
|
116 |
-
progress(0.9, f'Done generating {num_images} images')
|
117 |
-
if num_images % 2 == 1:
|
118 |
-
image = make_image_grid(images, rows=num_images, cols=1)
|
119 |
-
else:
|
120 |
-
image = make_image_grid(images, rows=2, cols=num_images // 2)
|
121 |
-
|
122 |
-
return image
|
123 |
|
124 |
|
125 |
def build_interface():
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
from src.const import MODEL_CHOICES
|
4 |
from src.example import EXAMPLES
|
5 |
+
from src.inference import inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
def build_interface():
|
src/const.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
DIFFUSERS_MODEL_IDS = [
|
4 |
+
# SD Models
|
5 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
6 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
7 |
+
"stabilityai/stable-diffusion-2-1",
|
8 |
+
"runwayml/stable-diffusion-v1-5",
|
9 |
+
|
10 |
+
# Other Models
|
11 |
+
"Prgckwb/trpfrog-diffusion",
|
12 |
+
]
|
13 |
+
EXTERNAL_MODEL_MAPPING = {
|
14 |
+
"Beautiful Realistic Asians": "checkpoints/diffusers/Beautiful Realistic Asians v7",
|
15 |
+
}
|
16 |
+
MODEL_CHOICES = DIFFUSERS_MODEL_IDS + list(EXTERNAL_MODEL_MAPPING.keys())
|
17 |
+
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
src/inference.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from compel import Compel, DiffusersTextualInversionManager
|
6 |
+
from diffusers import DiffusionPipeline, StableDiffusionPipeline
|
7 |
+
from diffusers.utils import make_image_grid
|
8 |
+
|
9 |
+
from src.const import DIFFUSERS_MODEL_IDS, EXTERNAL_MODEL_MAPPING, DEVICE
|
10 |
+
|
11 |
+
|
12 |
+
def load_pipeline(model_id, use_model_offload, safety_checker):
|
13 |
+
# Diffusers リポジトリ内のモデル
|
14 |
+
if model_id in DIFFUSERS_MODEL_IDS:
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(
|
16 |
+
model_id,
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
)
|
19 |
+
|
20 |
+
# CIVITAI 系列由来のモデル
|
21 |
+
else:
|
22 |
+
pipe = DiffusionPipeline.from_pretrained(
|
23 |
+
EXTERNAL_MODEL_MAPPING[model_id],
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load Textual Inversion
|
28 |
+
pipe.load_textual_inversion("checkpoints/embeddings/BadNegAnatomyV1 neg.pt", token='BadNegAnatomyV1-neg')
|
29 |
+
pipe.load_textual_inversion("checkpoints/embeddings/Deep Negative V1 75T.pt", token='DeepNegative')
|
30 |
+
pipe.load_textual_inversion("checkpoints/embeddings/easynegative.safetensors", token='EasyNegative')
|
31 |
+
pipe.load_textual_inversion("checkpoints/embeddings/Negative Hand Embedding.pt", token='negative_hand-neg')
|
32 |
+
|
33 |
+
# Load LoRA
|
34 |
+
pipe.load_lora_weights("checkpoints/lora/detailed style SD1.5.safetensors", adapter_name='detail')
|
35 |
+
pipe.load_lora_weights("checkpoints/lora/perfection style SD1.5.safetensors", adapter_name='perfection')
|
36 |
+
pipe.load_lora_weights("checkpoints/lora/Hand v3 SD1.5.safetensors", adapter_name='hands')
|
37 |
+
pipe.set_adapters(['detail', 'hands'], adapter_weights=[0.5, 0.5])
|
38 |
+
|
39 |
+
# VRAM が少ないとき用の対策
|
40 |
+
if use_model_offload:
|
41 |
+
pipe.enable_model_cpu_offload()
|
42 |
+
else:
|
43 |
+
pipe = pipe.to(DEVICE)
|
44 |
+
|
45 |
+
if not safety_checker:
|
46 |
+
pipe.safety_checker = None
|
47 |
+
|
48 |
+
return pipe
|
49 |
+
|
50 |
+
|
51 |
+
@spaces.GPU(duration=120)
|
52 |
+
@torch.inference_mode()
|
53 |
+
def inference(
|
54 |
+
prompt: str,
|
55 |
+
model_id: str = "stabilityai/stable-diffusion-3-medium-diffusers",
|
56 |
+
negative_prompt: str = "",
|
57 |
+
width: int = 512,
|
58 |
+
height: int = 512,
|
59 |
+
guidance_scale: float = 7.5,
|
60 |
+
num_inference_steps: int = 50,
|
61 |
+
num_images: int = 4,
|
62 |
+
safety_checker: bool = True,
|
63 |
+
use_model_offload: bool = False,
|
64 |
+
seed: int = 8888,
|
65 |
+
progress=gr.Progress(track_tqdm=True),
|
66 |
+
) -> Image.Image:
|
67 |
+
progress(0, 'Loading pipeline...')
|
68 |
+
pipe = load_pipeline(model_id, use_model_offload, safety_checker)
|
69 |
+
|
70 |
+
# Seed 固定
|
71 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
72 |
+
|
73 |
+
if isinstance(pipe, StableDiffusionPipeline):
|
74 |
+
# For Compel
|
75 |
+
textual_inversion_manager = DiffusersTextualInversionManager(pipe)
|
76 |
+
compel_procs = Compel(
|
77 |
+
tokenizer=pipe.tokenizer,
|
78 |
+
text_encoder=pipe.text_encoder,
|
79 |
+
textual_inversion_manager=textual_inversion_manager,
|
80 |
+
truncate_long_prompts=False,
|
81 |
+
)
|
82 |
+
prompt_embed = compel_procs(prompt)
|
83 |
+
negative_prompt_embed = compel_procs(negative_prompt)
|
84 |
+
|
85 |
+
prompt_embed, negative_prompt_embed = compel_procs.pad_conditioning_tensors_to_same_length(
|
86 |
+
[prompt_embed, negative_prompt_embed]
|
87 |
+
)
|
88 |
+
|
89 |
+
progress(0.3, 'Generating images...')
|
90 |
+
images = pipe(
|
91 |
+
prompt_embeds=prompt_embed,
|
92 |
+
negative_prompt_embeds=negative_prompt_embed,
|
93 |
+
width=width,
|
94 |
+
height=height,
|
95 |
+
guidance_scale=guidance_scale,
|
96 |
+
num_inference_steps=num_inference_steps,
|
97 |
+
num_images_per_prompt=num_images,
|
98 |
+
generator=generator,
|
99 |
+
).images
|
100 |
+
else:
|
101 |
+
progress(0.3, 'Generating images...')
|
102 |
+
images = pipe(
|
103 |
+
prompt=prompt,
|
104 |
+
negative_prompt=negative_prompt,
|
105 |
+
width=width,
|
106 |
+
height=height,
|
107 |
+
guidance_scale=guidance_scale,
|
108 |
+
num_inference_steps=num_inference_steps,
|
109 |
+
num_images=num_images,
|
110 |
+
generator=generator,
|
111 |
+
).images
|
112 |
+
|
113 |
+
progress(0.9, f'Done generating {num_images} images')
|
114 |
+
if num_images % 2 == 1:
|
115 |
+
image = make_image_grid(images, rows=num_images, cols=1)
|
116 |
+
else:
|
117 |
+
image = make_image_grid(images, rows=2, cols=num_images // 2)
|
118 |
+
|
119 |
+
return image
|