Prgckwb
:tada: init
6a91e71
raw
history blame
13 kB
import dataclasses
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import torch
import uuid
import torch.nn.functional as F
from PIL import Image
from pathlib import Path
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor, Attention
from rich import traceback
from torchvision.transforms.functional import to_tensor
from transformers import CLIPTokenizer, CLIPTextModel
from tqdm import tqdm
MODEL_ID = "CompVis/stable-diffusion-v1-4"
SEED = 1117
UNET_TIMESTEP = 1
traceback.install()
@dataclasses.dataclass
class AttentionStore:
index: int
query: torch.Tensor
key: torch.Tensor
value: torch.Tensor
attention_probs: torch.Tensor
class NewAttnProcessor(AttnProcessor):
def __init__(
self,
save_uncond_attention: bool = True,
save_cond_attention: bool = True,
max_cross_attention_maps: int = 64,
max_self_attention_maps: int = 64,
):
super().__init__()
self.save_uncond_attn = save_uncond_attention
self.save_cond_attn = save_cond_attention
self.max_cross_size = max_cross_attention_maps
self.max_self_size = max_self_attention_maps
self.cross_attention_stores = []
self.self_attention_stores = []
def _save_attention_store(
self,
is_cross: bool,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_probs: torch.Tensor
) -> None:
# Function to split tensors based on conditional probability
def split_tensors(tensor):
half_size = tensor.shape[0] // 2
return tensor[:half_size], tensor[half_size:]
# Split attention probabilities and q, k, v tensors
uncond_attn_probs, cond_attn_probs = split_tensors(attn_probs)
uncond_q, cond_q = split_tensors(q)
uncond_k, cond_k = split_tensors(k)
uncond_v, cond_v = split_tensors(v)
# Select tensors based on flags
if self.save_cond_attn and self.save_uncond_attn:
selected_probs, selected_q, selected_k, selected_v = attn_probs, q, k, v
elif self.save_cond_attn:
selected_probs, selected_q, selected_k, selected_v = cond_attn_probs, cond_q, cond_k, cond_v
elif self.save_uncond_attn:
selected_probs, selected_q, selected_k, selected_v = uncond_attn_probs, uncond_q, uncond_k, uncond_v
else:
return
# Determine max size based on attention type (cross or self)
max_size = self.max_cross_size if is_cross else self.max_self_size
# Filter out large attention maps
if selected_probs.shape[1] > max_size ** 2:
return
# Create and append attention store object
store = AttentionStore(
index=len(self.cross_attention_stores) if is_cross else len(self.self_attention_stores),
query=selected_q,
key=selected_k,
value=selected_v,
attention_probs=selected_probs
)
target_store = self.cross_attention_stores if is_cross else self.self_attention_stores
target_store.append(store)
return
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None,
temb: torch.FloatTensor = None,
*args,
**kwargs,
) -> torch.Tensor:
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# Save attention maps
self._save_attention_store(is_cross=is_cross_attention, q=query, k=key, v=value, attn_probs=attention_probs)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def reset_attention_stores(self) -> None:
self.cross_attention_stores = []
self.self_attention_stores = []
return
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(MODEL_ID, subfolder="tokenizer")
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained(MODEL_ID, subfolder="text_encoder").to(device)
unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained(MODEL_ID, subfolder="unet").to(device)
vae: AutoencoderKL = AutoencoderKL.from_pretrained(MODEL_ID, subfolder="vae").to(device)
unet.set_attn_processor(
NewAttnProcessor(
save_uncond_attention=False,
save_cond_attention=True,
)
)
@torch.inference_mode()
def inference(
image_path: str,
prompt: str,
has_include_special_tokens: bool = False,
progress=gr.Progress(track_tqdm=False)):
progress(0, "Initializing...")
image = Image.open(image_path)
image = image.convert("RGB").resize((512, 512))
image = to_tensor(image).unsqueeze(0).to(device)
progress(0.1, "Generating text embeddings...")
input_ids = tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
).input_ids.to(device)
n_cond_tokens = len(
tokenizer(
prompt,
return_tensors="pt",
truncation=True,
).input_ids[0]
)
cond_text_embeddings = text_encoder(input_ids).last_hidden_state[0].to(device)
uncond_input_ids = tokenizer(
"",
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
).input_ids.to(device)
uncond_text_embeddings = text_encoder(uncond_input_ids).last_hidden_state[0].to(device)
text_embeddings = torch.stack([uncond_text_embeddings, cond_text_embeddings], dim=0)
progress(0.2, "Encoding the input image...")
init_image = image.to(device)
init_latent_dist = vae.encode(init_image).latent_dist
# Fix the random seed for reproducibility
progress(0.3, "Generating the latents...")
generator = torch.Generator(device=device).manual_seed(SEED)
latent = init_latent_dist.sample(generator=generator)
latent = latent * vae.config['scaling_factor'] # scaling_factor = 0.18215
latents = latent.expand(len(image), unet.config['in_channels'], 512 // 8, 512 // 8)
latents_input = torch.cat([latents] * 2).to(device)
progress(0.5, "Forwarding the UNet model...")
_ = unet(latents_input, UNET_TIMESTEP, encoder_hidden_states=text_embeddings)
attn_processor = next(iter(unet.attn_processors.values()))
cross_attention_stores = attn_processor.cross_attention_stores
progress(0.7, "Processing the cross attention maps...")
cross_attention_probs_list = []
# 事前に保存しておいた、全ての Cross-Attention 層の出力を取得
for i, cross_attn_store in enumerate(cross_attention_stores):
cross_attn_probs = cross_attn_store.attention_probs # (8, 8x8~64x64, 77)
n_heads, scale_pow, n_tokens = cross_attn_probs.shape
# scale: 8, 16, 32, 64
scale = int(np.sqrt(scale_pow))
# Multi-head Attentionの平均を取って、1つのAttention Mapにする
mean_cross_attn_probs = (
cross_attn_probs
.permute(0, 2, 1) # (8, 77, 8x8~64x64)
.reshape(n_heads, n_tokens, scale, scale) # (8, 77, 8~64, 8~64)
.mean(dim=0) # (77, 8~64, 8~64)
)
# scale を 全て 512x512 に合わせる
mean_cross_attn_probs = F.interpolate(
mean_cross_attn_probs.unsqueeze(0),
size=(512, 512),
mode='bilinear',
align_corners=True
).squeeze(0) # (77, 512, 512)
# <bos> と <eos> トークンの間に挿入されたトークンのみを取得
if has_include_special_tokens:
mean_cross_attn_probs = mean_cross_attn_probs[:n_cond_tokens, ...] # (n_tokens, 512, 512)
else:
mean_cross_attn_probs = mean_cross_attn_probs[1:n_cond_tokens - 1, ...]
cross_attention_probs_list.append(mean_cross_attn_probs)
# list -> torch.Tensor
cross_attention_probs = torch.stack(cross_attention_probs_list) # (16, n_classes, 512, 512)
n_layers, n_cond_tokens, _, _ = cross_attention_probs.shape
progress(0.9, "Post-processing the attention maps...")
image_list = []
# 各行ごとに画像を作成し保存
for i in tqdm(range(cross_attention_probs.shape[0]), desc="Saving images..."):
if has_include_special_tokens:
fig, ax = plt.subplots(1, n_cond_tokens, figsize=(16, 4))
else:
fig, ax = plt.subplots(1, n_cond_tokens - 2, figsize=(16, 4))
for j in range(cross_attention_probs.shape[1]):
# 各クラスのアテンションマップを Min-Max 正規化 (0~1)
min_val = cross_attention_probs[i, j].min()
max_val = cross_attention_probs[i, j].max()
cross_attention_probs[i, j] = (cross_attention_probs[i, j] - min_val) / (max_val - min_val)
attn_probs = cross_attention_probs[i, j].cpu().detach().numpy()
ax[j].imshow(attn_probs, alpha=0.9)
ax[j].axis('off')
ax[j].set_title(tokenizer.decode(input_ids[0, j].item()))
# 各行ごとの画像を保存
out_dir = Path("output")
out_dir.mkdir(exist_ok=True)
# 一意なランダムファイル名を生成
unique_filename = str(uuid.uuid4())
filepath = out_dir / f"{unique_filename}.png"
plt.savefig(filepath, bbox_inches='tight', pad_inches=0)
plt.close(fig)
# 保存した画像をPILで読み込んでリストに追加
image_list.append(Image.open(filepath))
attn_processor.reset_attention_stores()
return image_list
if __name__ == '__main__':
unet_mapping = [
"0: Down 64",
"1: Down 64",
"2: Down 32",
"3: Down 32",
"4: Down 16",
"5: Down 16",
"6: Mid 8",
"7: Up 16",
"8: Up 16",
"9: Up 16",
"10: Up 32",
"11: Up 32",
"12: Up 32",
"13: Up 64",
"14: Up 64",
"15: Up 64",
]
ca_output = [gr.Image(type="pil", label=unet_mapping[i]) for i in range(16)]
iface = gr.Interface(
title="Stable Diffusion Attention Visualizer",
description="This is a visualizer for the attention maps of the Stable Diffusion model. ",
fn=inference,
inputs=[
gr.Image(type="filepath", label="Input", width=512, height=512),
gr.Textbox(label="Prompt", placeholder="e.g.) A photo of dog..."),
gr.Checkbox(label="Include Special Tokens", value=False),
],
outputs=ca_output,
cache_examples=True,
examples=[
["assets/aeroplane.png", "plane background", False],
["assets/dogcat.png", "a photo of dog", False],
]
)
iface.launch()