Prateek954's picture
Update main.py
84cc058 verified
raw
history blame
2.39 kB
from ultralytics import YOLO
import cv2
import util
from sort.sort import *
from util import get_car, read_license_plate, write_csv
results = {}
mot_tracker = Sort()
# load models
coco_model = YOLO('yolov8n.pt')
license_plate_detector = YOLO('./models/license_plate_detector.pt')
# load video
cap = cv2.VideoCapture('./sample.mp4')
vehicles = [2, 3, 5, 7]
# read frames
frame_nmr = -1
ret = True
while ret:
frame_nmr += 1
ret, frame = cap.read()
if ret:
results[frame_nmr] = {}
# detect vehicles
detections = coco_model(frame)[0]
detections_ = []
for detection in detections.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = detection
if int(class_id) in vehicles:
detections_.append([x1, y1, x2, y2, score])
# track vehicles
track_ids = mot_tracker.update(np.asarray(detections_))
# detect license plates
license_plates = license_plate_detector(frame)[0]
for license_plate in license_plates.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = license_plate
# assign license plate to car
xcar1, ycar1, xcar2, ycar2, car_id = get_car(license_plate, track_ids)
if car_id != -1:
# crop license plate
license_plate_crop = frame[int(y1):int(y2), int(x1): int(x2), :]
# process license plate
license_plate_crop_gray = cv2.cvtColor(license_plate_crop, cv2.COLOR_BGR2GRAY)
_, license_plate_crop_thresh = cv2.threshold(license_plate_crop_gray, 64, 255, cv2.THRESH_BINARY_INV)
# read license plate number
license_plate_text, license_plate_text_score = read_license_plate(license_plate_crop_thresh)
if license_plate_text is not None:
results[frame_nmr][car_id] = {'car': {'bbox': [xcar1, ycar1, xcar2, ycar2]},
'license_plate': {'bbox': [x1, y1, x2, y2],
'text': license_plate_text,
'bbox_score': score,
'text_score': license_plate_text_score}}
# write results
write_csv(results, './test.csv')