zenafey's picture
Update app.py
d276473
raw
history blame
14.5 kB
import numpy as np
import gradio as gr
import requests
import random
import time
import json
import base64
import os
from io import BytesIO
import math
import PIL
from PIL import Image
from PIL.ExifTags import TAGS
import html
import re
from threading import Thread
from dotenv import load_dotenv
load_dotenv()
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def generate(self, params):
response = self._post(f"{self.base}/sd/generate", params)
return response.json()
def transform(self, params):
response = self._post(f"{self.base}/sd/transform", params)
return response.json()
def controlnet(self, params):
response = self._post(f"{self.base}/sd/controlnet", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
response = self._get(f"{self.base}/sd/models")
return response.json()
def list_loras(self):
response = self._get(f"{self.base}/sd/loras")
return response.json()
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image_path):
# Open the image with PIL
with Image.open(image_path) as image:
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
def remove_id_and_ext(text):
text = re.sub(r'\[.*\]$', '', text)
extension = text[-12:].strip()
if extension == "safetensors":
text = text[:-13]
elif extension == "ckpt":
text = text[:-4]
return text
def place_lora(current_prompt, lorabtn):
if f"<lora:{lorabtn}:1.0>" in current_prompt:
result = current_prompt.replace(f"<lora:{lorabtn}:1.0>", "")
else:
result = f"{current_prompt} <lora:{lorabtn}:1>"
return result
def create_grid(image_urls):
# Download first image to get size
response = requests.get(image_urls[0])
img_data = response.content
img = Image.open(BytesIO(img_data))
w, h = img.size
# Calculate rows and cols
num_images = len(image_urls)
num_cols = min(num_images, 3)
num_rows = math.ceil(num_images / num_cols)
# Create new rgba image
grid_w = num_cols * w
grid_h = num_rows * h
grid = Image.new('RGBA', (grid_w, grid_h), (0, 0, 0, 0))
# Download images and paste into grid
for index, img_url in enumerate(image_urls):
response = requests.get(img_url)
img_data = response.content
img = Image.open(BytesIO(img_data))
row = index // num_cols
col = index % num_cols
grid.paste(img, (col * w, row * h))
# Save image
return grid
def get_data(text):
results = {}
patterns = {
'prompt': r'(.*)',
'negative_prompt': r'Negative prompt: (.*)',
'steps': r'Steps: (\d+),',
'seed': r'Seed: (\d+),',
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
'model': r'Model:\s*([^\s,]+)',
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
'size': r'Size:\s*([0-9]+x[0-9]+)'
}
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
match = re.search(patterns[key], text)
if match:
results[key] = match.group(1)
else:
results[key] = None
if results['size'] is not None:
w, h = results['size'].split("x")
results['w'] = w
results['h'] = h
else:
results['w'] = None
results['h'] = None
return results
def send_to_txt2img(image):
result = {tabs: gr.Tabs.update(selected="t2i")}
try:
text = image.info['parameters']
data = get_data(text)
result[prompt] = gr.update(value=data['prompt'])
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
'negative_prompt'] is not None else gr.update()
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
if data['model'] in model_names:
result[model] = gr.update(value=model_names[data['model']])
else:
result[model] = gr.update()
return result
except Exception as e:
print(e)
result[prompt] = gr.update()
result[negative_prompt] = gr.update()
result[steps] = gr.update()
result[seed] = gr.update()
result[cfg_scale] = gr.update()
result[width] = gr.update()
result[height] = gr.update()
result[sampler] = gr.update()
result[model] = gr.update()
return result
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
model_names = {}
for model_name in model_list:
name_without_ext = remove_id_and_ext(model_name)
model_names[name_without_ext] = model_name
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_size, batch_count, gallery):
data = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed,
"upscale": True
}
total_images = []
count_threads = []
def generate_one_grid():
grid_images = []
size_threads = []
def generate_one_image():
result = prodia_client.generate(data)
job = prodia_client.wait(result)
grid_images.append(job['imageUrl'])
for y in range(batch_size):
t = Thread(target=generate_one_image)
size_threads.append(t)
t.start()
for t in size_threads:
t.join()
total_images.append(create_grid(grid_images))
for x in range(batch_count):
t = Thread(target=generate_one_grid)
count_threads.append(t)
t.start()
for t in count_threads:
t.join()
new_images_list = [img['name'] for img in gallery]
for image in total_images:
new_images_list.insert(0, image)
return {image_output: total_images, gallery_obj: new_images_list}
css = """
#generate {
height: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(scale=6):
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
with gr.Column(scale=1):
gr.Markdown(elem_id="powered-by-prodia",
value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br> For more features and faster gen times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide)")
with gr.Tabs() as tabs:
with gr.Tab("txt2img", id='t2i'):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
with gr.Column():
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=1):
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
choices=[
"Euler",
"Euler a",
"LMS",
"Heun",
"DPM2",
"DPM2 a",
"DPM++ 2S a",
"DPM++ 2M",
"DPM++ SDE",
"DPM fast",
"DPM adaptive",
"LMS Karras",
"DPM2 Karras",
"DPM2 a Karras",
"DPM++ 2S a Karras",
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DDIM",
"PLMS",
])
with gr.Column(scale=1):
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
with gr.Row():
with gr.Column(scale=1):
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
with gr.Column(scale=1):
batch_size = gr.Slider(label="Batch Size", minimum=1, maximum=9, value=1, step=1)
batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=100, value=1, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
seed = gr.Number(label="Seed", value=-1)
with gr.Tab("Lora"):
loralist = prodia_client.list_loras()
with gr.Row():
for lora in loralist:
lora_btn = gr.Button(lora, size="sm")
lora_btn.click(place_lora, inputs=[prompt, lora_btn], outputs=prompt)
with gr.Column(scale=2):
image_output = gr.Gallery(value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"], preview=True)
with gr.Tab("PNG Info"):
def plaintext_to_html(text, classname=None):
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
def get_exif_data(image):
items = image.info
info = ''
for key, text in items.items():
info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip() + "\n"
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return info
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil")
with gr.Column():
exif_output = gr.HTML(label="EXIF Data")
send_to_txt2img_btn = gr.Button("Send to txt2img")
with gr.Tab("Gallery"):
gallery_obj = gr.Gallery(height=1000, columns=5)
text_button.click(flip_text,
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_size, batch_count,
gallery_obj], outputs=[image_output, gallery_obj])
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input],
outputs=[tabs, prompt, negative_prompt, steps, seed,
model, sampler, width, height, cfg_scale])
demo.queue(concurrency_count=32)
demo.launch()