Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
import requests | |
import time | |
import json | |
import base64 | |
import os | |
from io import BytesIO | |
import PIL | |
from PIL.ExifTags import TAGS | |
import html | |
import re | |
from threading import Thread | |
class Prodia: | |
def __init__(self, api_key, base=None): | |
self.base = base or "https://api.prodia.com/v1" | |
self.headers = { | |
"X-Prodia-Key": api_key | |
} | |
def generate(self, params): | |
response = self._post(f"{self.base}/sd/generate", params) | |
return response.json() | |
def transform(self, params): | |
response = self._post(f"{self.base}/sd/transform", params) | |
return response.json() | |
def controlnet(self, params): | |
response = self._post(f"{self.base}/sd/controlnet", params) | |
return response.json() | |
def upscale(self, params): | |
response = self._post(f"{self.base}/upscale", params) | |
return response.json() | |
def get_job(self, job_id): | |
response = self._get(f"{self.base}/job/{job_id}") | |
return response.json() | |
def wait(self, job): | |
job_result = job | |
while job_result['status'] not in ['succeeded', 'failed']: | |
time.sleep(0.5) | |
job_result = self.get_job(job['job']) | |
return job_result | |
def list_models(self): | |
response = self._get(f"{self.base}/sd/models") | |
return response.json() | |
def list_loras(self): | |
response = self._get(f"{self.base}/sd/loras") | |
return response.json() | |
def _post(self, url, params): | |
headers = { | |
**self.headers, | |
"Content-Type": "application/json" | |
} | |
response = requests.post(url, headers=headers, data=json.dumps(params)) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def _get(self, url): | |
response = requests.get(url, headers=self.headers) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def image_to_base64(image): | |
# Convert the image to bytes | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") # You can change format to PNG if needed | |
# Encode the bytes to base64 | |
img_str = base64.b64encode(buffered.getvalue()) | |
return img_str.decode('utf-8') # Convert bytes to string | |
def remove_id_and_ext(text): | |
text = re.sub(r'\[.*\]$', '', text) | |
extension = text[-12:].strip() | |
if extension == "safetensors": | |
text = text[:-13] | |
elif extension == "ckpt": | |
text = text[:-4] | |
return text | |
def get_data(text): | |
results = {} | |
patterns = { | |
'prompt': r'(.*)', | |
'negative_prompt': r'Negative prompt: (.*)', | |
'steps': r'Steps: (\d+),', | |
'seed': r'Seed: (\d+),', | |
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', | |
'model': r'Model:\s*([^\s,]+)', | |
'cfg_scale': r'CFG scale:\s*([\d\.]+)', | |
'size': r'Size:\s*([0-9]+x[0-9]+)' | |
} | |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']: | |
match = re.search(patterns[key], text) | |
if match: | |
results[key] = match.group(1) | |
else: | |
results[key] = None | |
if results['size'] is not None: | |
w, h = results['size'].split("x") | |
results['w'] = w | |
results['h'] = h | |
else: | |
results['w'] = None | |
results['h'] = None | |
return results | |
def send_to_txt2img(image): | |
result = {tabs: gr.Tabs.update(selected="t2i")} | |
try: | |
text = image.info['parameters'] | |
data = get_data(text) | |
result[prompt] = gr.update(value=data['prompt']) | |
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[ | |
'negative_prompt'] is not None else gr.update() | |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update() | |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update() | |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update() | |
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update() | |
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update() | |
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update() | |
if data['model'] in model_names: | |
result[model] = gr.update(value=model_names[data['model']]) | |
else: | |
result[model] = gr.update() | |
return result | |
except Exception as e: | |
print(e) | |
result[prompt] = gr.update() | |
result[negative_prompt] = gr.update() | |
result[steps] = gr.update() | |
result[seed] = gr.update() | |
result[cfg_scale] = gr.update() | |
result[width] = gr.update() | |
result[height] = gr.update() | |
result[sampler] = gr.update() | |
result[model] = gr.update() | |
return result | |
def place_lora(current_prompt, lora_name): | |
pattern = r"<lora:" + lora_name + r":.*?>" | |
if re.search(pattern, current_prompt): | |
yield re.sub(pattern, "", current_prompt) | |
else: | |
yield current_prompt + " <lora:" + lora_name + ":1> " | |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) | |
model_list = prodia_client.list_models() | |
lora_list = prodia_client.list_loras() | |
model_names = {} | |
for model_name in model_list: | |
name_without_ext = remove_id_and_ext(model_name) | |
model_names[name_without_ext] = model_name | |
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_count, gallery): | |
yield { | |
text_button: gr.update(visible=False), | |
stop_btn: gr.update(visible=True), | |
} | |
data = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"model": model, | |
"steps": steps, | |
"sampler": sampler, | |
"cfg_scale": cfg_scale, | |
"width": width, | |
"height": height, | |
"seed": seed | |
} | |
total_images = [] | |
threads = [] | |
def generate_one_image(): | |
result = prodia_client.generate(data) | |
job = prodia_client.wait(result) | |
total_images.append(job['imageUrl']) | |
for x in range(batch_count): | |
t = Thread(target=generate_one_image) | |
threads.append(t) | |
t.start() | |
for t in threads: | |
t.join() | |
new_images_list = [img['name'] for img in gallery] | |
for image in total_images: | |
new_images_list.insert(0, image) | |
if batch_count > 1: | |
results = gr.update(value=total_images, preview=False) | |
else: | |
results = gr.update(value=total_images, preview=True) | |
yield { | |
text_button: gr.update(visible=True), | |
stop_btn: gr.update(visible=False), | |
image_output: results, | |
gallery_obj: gr.update(value=new_images_list), | |
} | |
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, | |
batch_count, gallery): | |
if input_image is None: | |
return | |
yield { | |
i2i_text_button: gr.update(visible=False), | |
i2i_stop_btn: gr.update(visible=True), | |
} | |
data = { | |
"imageData": image_to_base64(input_image), | |
"denoising_strength": denoising, | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"model": model, | |
"steps": steps, | |
"sampler": sampler, | |
"cfg_scale": cfg_scale, | |
"width": width, | |
"height": height, | |
"seed": seed | |
} | |
total_images = [] | |
threads = [] | |
def generate_one_image(): | |
result = prodia_client.transform(data) | |
job = prodia_client.wait(result) | |
total_images.append(job['imageUrl']) | |
for x in range(batch_count): | |
t = Thread(target=generate_one_image) | |
threads.append(t) | |
t.start() | |
for t in threads: | |
t.join() | |
new_images_list = [img['name'] for img in gallery] | |
for image in total_images: | |
new_images_list.insert(0, image) | |
if batch_count > 1: | |
results = gr.update(value=total_images, preview=False) | |
else: | |
results = gr.update(value=total_images, preview=True) | |
yield { | |
i2i_text_button: gr.update(visible=True), | |
i2i_stop_btn: gr.update(visible=False), | |
i2i_image_output: results, | |
gallery_obj: gr.update(value=new_images_list), | |
} | |
def upscale_fn(image, scale): | |
if image is None: | |
return | |
yield { | |
upscale_btn: gr.update(visible=False), | |
upscale_stop: gr.update(visible=True), | |
} | |
job = prodia_client.upscale({ | |
'imageData': image_to_base64(image), | |
'resize': scale | |
}) | |
result = prodia_client.wait(job) | |
yield { | |
upscale_output: result['imageUrl'], | |
upscale_btn: gr.update(visible=True), | |
upscale_stop: gr.update(visible=False) | |
} | |
def stop_upscale(): | |
return { | |
upscale_btn: gr.update(visible=True), | |
upscale_stop: gr.update(visible=False) | |
} | |
def stop_t2i(): | |
return { | |
text_button: gr.update(visible=True), | |
stop_btn: gr.update(visible=False) | |
} | |
def stop_i2i(): | |
return { | |
i2i_text_button: gr.update(visible=True), | |
i2i_stop_btn: gr.update(visible=False) | |
} | |
samplers = [ | |
"Euler", | |
"Euler a", | |
"LMS", | |
"Heun", | |
"DPM2", | |
"DPM2 a", | |
"DPM++ 2S a", | |
"DPM++ 2M", | |
"DPM++ SDE", | |
"DPM fast", | |
"DPM adaptive", | |
"LMS Karras", | |
"DPM2 Karras", | |
"DPM2 a Karras", | |
"DPM++ 2S a Karras", | |
"DPM++ 2M Karras", | |
"DPM++ SDE Karras", | |
"DDIM", | |
"PLMS", | |
] | |
css = """ | |
:root, .dark{ | |
--checkbox-label-gap: 0.25em 0.1em; | |
--section-header-text-size: 12pt; | |
--block-background-fill: transparent; | |
} | |
.block.padded:not(.gradio-accordion) { | |
padding: 0 !important; | |
} | |
div.gradio-container{ | |
max-width: unset !important; | |
} | |
.compact{ | |
background: transparent !important; | |
padding: 0 !important; | |
} | |
div.form{ | |
border-width: 0; | |
box-shadow: none; | |
background: transparent; | |
overflow: visible; | |
gap: 0.5em; | |
} | |
.block.gradio-dropdown, | |
.block.gradio-slider, | |
.block.gradio-checkbox, | |
.block.gradio-textbox, | |
.block.gradio-radio, | |
.block.gradio-checkboxgroup, | |
.block.gradio-number, | |
.block.gradio-colorpicker { | |
border-width: 0 !important; | |
box-shadow: none !important; | |
} | |
.gradio-dropdown label span:not(.has-info), | |
.gradio-textbox label span:not(.has-info), | |
.gradio-number label span:not(.has-info) | |
{ | |
margin-bottom: 0; | |
} | |
.gradio-dropdown ul.options{ | |
z-index: 3000; | |
min-width: fit-content; | |
max-width: inherit; | |
white-space: nowrap; | |
} | |
.gradio-dropdown ul.options li.item { | |
padding: 0.05em 0; | |
} | |
.gradio-dropdown ul.options li.item.selected { | |
background-color: var(--neutral-100); | |
} | |
.dark .gradio-dropdown ul.options li.item.selected { | |
background-color: var(--neutral-900); | |
} | |
.gradio-dropdown div.wrap.wrap.wrap.wrap{ | |
box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05); | |
} | |
.gradio-dropdown:not(.multiselect) .wrap-inner.wrap-inner.wrap-inner{ | |
flex-wrap: unset; | |
} | |
.gradio-dropdown .single-select{ | |
white-space: nowrap; | |
overflow: hidden; | |
} | |
.gradio-dropdown .token-remove.remove-all.remove-all{ | |
display: none; | |
} | |
.gradio-dropdown.multiselect .token-remove.remove-all.remove-all{ | |
display: flex; | |
} | |
.gradio-slider input[type="number"]{ | |
width: 6em; | |
} | |
.block.gradio-checkbox { | |
margin: 0.75em 1.5em 0 0; | |
} | |
.gradio-html div.wrap{ | |
height: 100%; | |
} | |
div.gradio-html.min{ | |
min-height: 0; | |
} | |
#model_dd { | |
width: 16%; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, | |
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models(), elem_id="model_dd") | |
with gr.Tabs() as tabs: | |
with gr.Tab("txt2img", id='t2i'): | |
with gr.Row(): | |
with gr.Column(scale=6, min_width=600): | |
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", | |
placeholder="Prompt", show_label=False, lines=3) | |
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, | |
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly") | |
with gr.Row(): | |
text_button = gr.Button("Generate", variant='primary', elem_id="generate") | |
stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Generation"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", | |
choices=samplers) | |
with gr.Column(scale=1): | |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8) | |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8) | |
with gr.Column(scale=1): | |
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) | |
batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1) | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) | |
seed = gr.Number(label="Seed", value=-1) | |
with gr.Tab("Lora"): | |
with gr.Row(): | |
for lora in lora_list: | |
lora_btn = gr.Button(lora, size="sm") | |
lora_btn.click(place_lora, inputs=[prompt, lora_btn], outputs=prompt) | |
with gr.Column(): | |
image_output = gr.Gallery(columns=3, | |
value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"]) | |
with gr.Tab("img2img", id='i2i'): | |
with gr.Row(): | |
with gr.Column(scale=6, min_width=600): | |
i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", | |
placeholder="Prompt", show_label=False, lines=3) | |
i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, | |
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly") | |
with gr.Row(): | |
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate") | |
i2i_stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Tab("Generation"): | |
i2i_image_input = gr.Image(type="pil") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
i2i_sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, | |
label="Sampling Method", choices=samplers) | |
with gr.Column(scale=1): | |
i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1) | |
with gr.Row(): | |
with gr.Column(scale=6): | |
i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8) | |
i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8) | |
with gr.Column(scale=1): | |
i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) | |
i2i_batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1) | |
i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) | |
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1) | |
i2i_seed = gr.Number(label="Seed", value=-1) | |
with gr.Tab("Lora"): | |
with gr.Row(): | |
for lora in lora_list: | |
lora_btn = gr.Button(lora, size="sm") | |
lora_btn.click(place_lora, inputs=[i2i_prompt, lora_btn], outputs=i2i_prompt) | |
with gr.Column(scale=1): | |
i2i_image_output = gr.Gallery(columns=3, | |
value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"]) | |
with gr.Tab("Extras"): | |
with gr.Row(): | |
with gr.Tab("Single Image"): | |
with gr.Column(): | |
upscale_image_input = gr.Image(type="pil") | |
upscale_btn = gr.Button("Generate", variant="primary") | |
upscale_stop = gr.Button("Stop", variant="stop", visible=False) | |
with gr.Tab("Scale by"): | |
scale_by = gr.Radio([2, 4], value=2, label="Resize") | |
upscale_output = gr.Image() | |
with gr.Tab("PNG Info"): | |
def plaintext_to_html(text, classname=None): | |
content = "<br>\n".join(html.escape(x) for x in text.split('\n')) | |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>" | |
def get_exif_data(image): | |
items = image.info | |
info = '' | |
for key, text in items.items(): | |
info += f""" | |
<div> | |
<p><b>{plaintext_to_html(str(key))}</b></p> | |
<p>{plaintext_to_html(str(text))}</p> | |
</div> | |
""".strip() + "\n" | |
if len(info) == 0: | |
message = "Nothing found in the image." | |
info = f"<div><p>{message}<p></div>" | |
return info | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil") | |
with gr.Column(): | |
exif_output = gr.HTML(label="EXIF Data") | |
send_to_txt2img_btn = gr.Button("Send to txt2img") | |
with gr.Tab("Gallery"): | |
gallery_obj = gr.Gallery(height=1000, columns=6) | |
t2i_event = text_button.click(txt2img, | |
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, | |
seed, batch_count, gallery_obj], outputs=[image_output, gallery_obj, text_button, stop_btn]) | |
stop_btn.click(fn=stop_t2i, outputs=[text_button, stop_btn], cancels=[t2i_event]) | |
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output) | |
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], | |
outputs=[tabs, prompt, negative_prompt, steps, seed, model, sampler, width, height, | |
cfg_scale]) | |
i2i_event = i2i_text_button.click(img2img, | |
inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt, | |
model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height, | |
i2i_seed, i2i_batch_count, gallery_obj], | |
outputs=[i2i_image_output, gallery_obj, i2i_text_button, i2i_stop_btn]) | |
i2i_stop_btn.click(fn=stop_i2i, outputs=[i2i_text_button, i2i_stop_btn], cancels=[i2i_event]) | |
upscale_event = upscale_btn.click(fn=upscale_fn, inputs=[upscale_image_input, scale_by], outputs=[upscale_output, upscale_btn, upscale_stop]) | |
upscale_stop.click(fn=stop_upscale, outputs=[upscale_btn, upscale_stop], cancels=[upscale_event]) | |
demo.queue().launch(max_threads=256) | |