File size: 20,966 Bytes
5ddef29
 
 
 
 
 
 
 
d49e1e5
 
bab1e75
928dc00
fe30a6a
d49e1e5
7ae7416
 
 
5ddef29
 
 
 
 
 
fe30a6a
5ddef29
4fff7a9
5ddef29
fe30a6a
5ddef29
4fff7a9
5ddef29
fe30a6a
5ddef29
4fff7a9
5ddef29
fe30a6a
7ae7416
 
 
 
5ddef29
 
 
 
 
 
 
 
7ae7416
5ddef29
 
 
 
 
2f14be5
5ddef29
 
3833472
 
 
 
5ddef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae7416
 
 
 
fe30a6a
7ae7416
 
5ddef29
 
 
fe30a6a
b62f01b
 
 
 
 
 
 
 
 
fe30a6a
b62f01b
 
 
 
 
 
 
fe30a6a
b62f01b
 
 
fe30a6a
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe30a6a
b62f01b
 
 
 
 
 
 
fe30a6a
 
b62f01b
 
 
 
 
 
fe30a6a
 
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae7416
 
 
 
 
 
 
5ddef29
 
b62f01b
7ae7416
b62f01b
 
 
 
 
5ddef29
fe30a6a
7ae7416
 
 
 
 
fe30a6a
5ddef29
 
 
 
 
3bebd7a
 
79e5823
7ae7416
fe30a6a
 
 
7ae7416
fe30a6a
7ae7416
 
 
 
fe30a6a
7ae7416
 
 
 
fe30a6a
7ae7416
 
 
 
 
 
 
fe30a6a
7ae7416
 
 
 
 
 
 
 
 
 
 
fe30a6a
5ddef29
7ae7416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddef29
7ae7416
 
fe30a6a
7ae7416
 
 
 
fe30a6a
 
7ae7416
 
fe30a6a
 
7ae7416
fe30a6a
 
 
 
 
 
 
7ae7416
 
 
 
5ddef29
7ae7416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49e1e5
5ddef29
7ae7416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee5c24
5ddef29
 
53264d2
7ae7416
 
98511b0
b62f01b
7ae7416
b62f01b
7ae7416
fe30a6a
7ae7416
 
fe30a6a
7ae7416
b62f01b
7ae7416
fe30a6a
b62f01b
7ae7416
b62f01b
 
 
7ae7416
 
fe30a6a
b62f01b
 
fe30a6a
b62f01b
7ae7416
b62f01b
 
fe30a6a
b62f01b
7ae7416
 
fe30a6a
b62f01b
 
fe30a6a
3833472
08e6691
7ae7416
d276473
 
3833472
7ae7416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe30a6a
b62f01b
 
 
fe30a6a
b62f01b
fe30a6a
 
b62f01b
 
fe30a6a
b62f01b
 
 
 
 
 
 
fe30a6a
 
b62f01b
 
 
fe30a6a
b62f01b
fe30a6a
7ae7416
b62f01b
 
 
fe30a6a
b62f01b
 
 
fe30a6a
 
7ae7416
 
 
 
 
 
fe30a6a
 
 
7ae7416
 
 
 
 
 
 
 
 
 
 
 
d49e1e5
7ae7416
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from io import BytesIO
import PIL
from PIL.ExifTags import TAGS
import html
import re
from threading import Thread

from dotenv import load_dotenv
load_dotenv()

class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }

    def generate(self, params):
        response = self._post(f"{self.base}/sd/generate", params)
        return response.json()

    def transform(self, params):
        response = self._post(f"{self.base}/sd/transform", params)
        return response.json()

    def controlnet(self, params):
        response = self._post(f"{self.base}/sd/controlnet", params)
        return response.json()

    def upscale(self, params):
        response = self._post(f"{self.base}/upscale", params)
        return response.json()

    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.5)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sd/models")
        return response.json()

    def list_loras(self):
        response = self._get(f"{self.base}/sd/loras")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image):
    # Convert the image to bytes
    buffered = BytesIO()
    image.save(buffered, format="PNG")  # You can change format to PNG if needed

    # Encode the bytes to base64
    img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string


def remove_id_and_ext(text):
    text = re.sub(r'\[.*\]$', '', text)
    extension = text[-12:].strip()
    if extension == "safetensors":
        text = text[:-13]
    elif extension == "ckpt":
        text = text[:-4]
    return text


def get_data(text):
    results = {}
    patterns = {
        'prompt': r'(.*)',
        'negative_prompt': r'Negative prompt: (.*)',
        'steps': r'Steps: (\d+),',
        'seed': r'Seed: (\d+),',
        'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
        'model': r'Model:\s*([^\s,]+)',
        'cfg_scale': r'CFG scale:\s*([\d\.]+)',
        'size': r'Size:\s*([0-9]+x[0-9]+)'
    }
    for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
        match = re.search(patterns[key], text)
        if match:
            results[key] = match.group(1)
        else:
            results[key] = None
    if results['size'] is not None:
        w, h = results['size'].split("x")
        results['w'] = w
        results['h'] = h
    else:
        results['w'] = None
        results['h'] = None
    return results


def send_to_txt2img(image):
    result = {tabs: gr.Tabs.update(selected="t2i")}

    try:
        text = image.info['parameters']
        data = get_data(text)
        result[prompt] = gr.update(value=data['prompt'])
        result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
                                                                                  'negative_prompt'] is not None else gr.update()
        result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
        result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
        result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
        result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
        result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
        result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
        if data['model'] in model_names:
            result[model] = gr.update(value=model_names[data['model']])
        else:
            result[model] = gr.update()
        return result

    except Exception as e:
        print(e)
        result[prompt] = gr.update()
        result[negative_prompt] = gr.update()
        result[steps] = gr.update()
        result[seed] = gr.update()
        result[cfg_scale] = gr.update()
        result[width] = gr.update()
        result[height] = gr.update()
        result[sampler] = gr.update()
        result[model] = gr.update()

        return result

def place_lora(current_prompt, lora_name):
    pattern = r"<lora:" + lora_name + r":.*?>"

    if re.search(pattern, current_prompt):
        yield re.sub(pattern, "", current_prompt)
    else:
        yield current_prompt + " <lora:" + lora_name + ":1> "

prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
lora_list = prodia_client.list_loras()
model_names = {}

for model_name in model_list:
    name_without_ext = remove_id_and_ext(model_name)
    model_names[name_without_ext] = model_name


def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_count, gallery):
    yield {
        text_button: gr.update(visible=False),
        stop_btn: gr.update(visible=True),
    }
    data = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    }

    total_images = []
    threads = []

    def generate_one_image():
        result = prodia_client.generate(data)
        job = prodia_client.wait(result)
        total_images.append(job['imageUrl'])

    for x in range(batch_count):
        t = Thread(target=generate_one_image)
        threads.append(t)
        t.start()

    for t in threads:
        t.join()

    new_images_list = [img['name'] for img in gallery]

    for image in total_images:
        new_images_list.insert(0, image)

    if batch_count > 1:
        results = gr.update(value=total_images, preview=False)
    else:
        results = gr.update(value=total_images, preview=True)

    yield {
        text_button: gr.update(visible=True),
        stop_btn: gr.update(visible=False),
        image_output: results,
        gallery_obj: gr.update(value=new_images_list),
    }


def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed,
            batch_count, gallery):
    if input_image is None:
        return
    yield {
        i2i_text_button: gr.update(visible=False),
        i2i_stop_btn: gr.update(visible=True),
    }
    data = {
        "imageData": image_to_base64(input_image),
        "denoising_strength": denoising,
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    }

    total_images = []
    threads = []

    def generate_one_image():
        result = prodia_client.transform(data)
        job = prodia_client.wait(result)
        total_images.append(job['imageUrl'])

    for x in range(batch_count):
        t = Thread(target=generate_one_image)
        threads.append(t)
        t.start()

    for t in threads:
        t.join()

    new_images_list = [img['name'] for img in gallery]

    for image in total_images:
        new_images_list.insert(0, image)

    if batch_count > 1:
        results = gr.update(value=total_images, preview=False)
    else:
        results = gr.update(value=total_images, preview=True)

    yield {
        i2i_text_button: gr.update(visible=True),
        i2i_stop_btn: gr.update(visible=False),
        i2i_image_output: results,
        gallery_obj: gr.update(value=new_images_list),
    }

def upscale_fn(image, scale):
    if image is None:
        return
    yield {
        upscale_btn: gr.update(visible=False),
        upscale_stop: gr.update(visible=True),
    }
    job = prodia_client.upscale({
        'imageData': image_to_base64(image),
        'resize': scale
    })

    result = prodia_client.wait(job)
    yield {
        upscale_output: result['imageUrl'],
        upscale_btn: gr.update(visible=True),
        upscale_stop: gr.update(visible=False)
    }

def stop_upscale():
    return {
        upscale_btn: gr.update(visible=True),
        upscale_stop: gr.update(visible=False)
    }

def stop_t2i():
    return {
        text_button: gr.update(visible=True),
        stop_btn: gr.update(visible=False)
    }

def stop_i2i():
    return {
        i2i_text_button: gr.update(visible=True),
        i2i_stop_btn: gr.update(visible=False)
    }



samplers = [
    "Euler",
    "Euler a",
    "LMS",
    "Heun",
    "DPM2",
    "DPM2 a",
    "DPM++ 2S a",
    "DPM++ 2M",
    "DPM++ SDE",
    "DPM fast",
    "DPM adaptive",
    "LMS Karras",
    "DPM2 Karras",
    "DPM2 a Karras",
    "DPM++ 2S a Karras",
    "DPM++ 2M Karras",
    "DPM++ SDE Karras",
    "DDIM",
    "PLMS",
]

css = """
:root, .dark{
    --checkbox-label-gap: 0.25em 0.1em;
    --section-header-text-size: 12pt;
    --block-background-fill: transparent;
}
.block.padded:not(.gradio-accordion) {
    padding: 0 !important;
}
div.gradio-container{
    max-width: unset !important;
}
.compact{
    background: transparent !important;
    padding: 0 !important;
}
div.form{
    border-width: 0;
    box-shadow: none;
    background: transparent;
    overflow: visible;
    gap: 0.5em;
}
.block.gradio-dropdown,
.block.gradio-slider,
.block.gradio-checkbox,
.block.gradio-textbox,
.block.gradio-radio,
.block.gradio-checkboxgroup,
.block.gradio-number,
.block.gradio-colorpicker {
    border-width: 0 !important;
    box-shadow: none !important;
}
.gradio-dropdown label span:not(.has-info),
.gradio-textbox label span:not(.has-info),
.gradio-number label span:not(.has-info)
{
    margin-bottom: 0;
}
.gradio-dropdown ul.options{
    z-index: 3000;
    min-width: fit-content;
    max-width: inherit;
    white-space: nowrap;
}
.gradio-dropdown ul.options li.item {
    padding: 0.05em 0;
}
.gradio-dropdown ul.options li.item.selected {
    background-color: var(--neutral-100);
}
.dark .gradio-dropdown ul.options li.item.selected {
    background-color: var(--neutral-900);
}
.gradio-dropdown div.wrap.wrap.wrap.wrap{
    box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);
}
.gradio-dropdown:not(.multiselect) .wrap-inner.wrap-inner.wrap-inner{
    flex-wrap: unset;
}
.gradio-dropdown .single-select{
    white-space: nowrap;
    overflow: hidden;
}
.gradio-dropdown .token-remove.remove-all.remove-all{
    display: none;
}
.gradio-dropdown.multiselect .token-remove.remove-all.remove-all{
    display: flex;
}
.gradio-slider input[type="number"]{
    width: 6em;
}
.block.gradio-checkbox {
    margin: 0.75em 1.5em 0 0;
}
.gradio-html div.wrap{
    height: 100%;
}
div.gradio-html.min{
    min-height: 0;
}
#model_dd {
    width: 16%;
}
"""

with gr.Blocks(css=css) as demo:
    model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
                                label="Stable Diffusion Checkpoint", choices=prodia_client.list_models(), elem_id="model_dd")

    with gr.Tabs() as tabs:
        with gr.Tab("txt2img", id='t2i'):
            with gr.Row():
                with gr.Column(scale=6, min_width=600):
                    prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
                                        placeholder="Prompt", show_label=False, lines=3)
                    negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
                                                 value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
                with gr.Row():
                    text_button = gr.Button("Generate", variant='primary', elem_id="generate")
                    stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False)

            with gr.Row():
                with gr.Column():
                    with gr.Tab("Generation"):
                        with gr.Row():
                            with gr.Column(scale=1):
                                sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method",
                                                      choices=samplers)

                            with gr.Column(scale=1):
                                steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)

                        with gr.Row():
                            with gr.Column(scale=8):
                                width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
                                height = gr.Slider(label="Height", maximum=1024, value=512, step=8)

                            with gr.Column(scale=1):
                                batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                                batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1)

                        cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                        seed = gr.Number(label="Seed", value=-1)

                    with gr.Tab("Lora"):
                        with gr.Row():
                            for lora in lora_list:
                                lora_btn = gr.Button(lora, size="sm")
                                lora_btn.click(place_lora, inputs=[prompt, lora_btn], outputs=prompt)

                with gr.Column():
                    image_output = gr.Gallery(columns=3,
                        value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"])

        with gr.Tab("img2img", id='i2i'):
            with gr.Row():
                with gr.Column(scale=6, min_width=600):
                    i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
                                            placeholder="Prompt", show_label=False, lines=3)
                    i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
                                                     value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
                with gr.Row():
                    i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
                    i2i_stop_btn = gr.Button("Cancel", variant="stop", elem_id="generate", visible=False)

            with gr.Row():
                with gr.Column(scale=1):
                    with gr.Tab("Generation"):
                        i2i_image_input = gr.Image(type="pil")

                        with gr.Row():
                            with gr.Column(scale=1):
                                i2i_sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True,
                                                          label="Sampling Method", choices=samplers)

                            with gr.Column(scale=1):
                                i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)

                        with gr.Row():
                            with gr.Column(scale=6):
                                i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
                                i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)

                            with gr.Column(scale=1):
                                i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                                i2i_batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1)

                        i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                        i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
                        i2i_seed = gr.Number(label="Seed", value=-1)

                    with gr.Tab("Lora"):
                        with gr.Row():
                            for lora in lora_list:
                                lora_btn = gr.Button(lora, size="sm")
                                lora_btn.click(place_lora, inputs=[i2i_prompt, lora_btn], outputs=i2i_prompt)

                with gr.Column(scale=1):
                    i2i_image_output = gr.Gallery(columns=3,
                        value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"])

        with gr.Tab("Extras"):
            with gr.Row():
                with gr.Tab("Single Image"):
                    with gr.Column():
                        upscale_image_input = gr.Image(type="pil")
                        upscale_btn = gr.Button("Generate", variant="primary")
                        upscale_stop = gr.Button("Stop", variant="stop", visible=False)
                        with gr.Tab("Scale by"):
                            scale_by = gr.Radio([2, 4], value=2, label="Resize")

                upscale_output = gr.Image()

        with gr.Tab("PNG Info"):
            def plaintext_to_html(text, classname=None):
                content = "<br>\n".join(html.escape(x) for x in text.split('\n'))

                return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"


            def get_exif_data(image):
                items = image.info

                info = ''
                for key, text in items.items():
                    info += f"""
                    <div>
                    <p><b>{plaintext_to_html(str(key))}</b></p>
                    <p>{plaintext_to_html(str(text))}</p>
                    </div>
                    """.strip() + "\n"

                if len(info) == 0:
                    message = "Nothing found in the image."
                    info = f"<div><p>{message}<p></div>"

                return info


            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(type="pil")

                with gr.Column():
                    exif_output = gr.HTML(label="EXIF Data")
                    send_to_txt2img_btn = gr.Button("Send to txt2img")

        with gr.Tab("Gallery"):
            gallery_obj = gr.Gallery(height=1000, columns=6)

        t2i_event = text_button.click(txt2img,
                                      inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
                                              seed, batch_count, gallery_obj], outputs=[image_output, gallery_obj, text_button, stop_btn])
        stop_btn.click(fn=stop_t2i, outputs=[text_button, stop_btn], cancels=[t2i_event])

        image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
        send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input],
                                  outputs=[tabs, prompt, negative_prompt, steps, seed, model, sampler, width, height,
                                           cfg_scale])

        i2i_event = i2i_text_button.click(img2img,
                                          inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
                                                  model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
                                                  i2i_seed, i2i_batch_count, gallery_obj],
                                          outputs=[i2i_image_output, gallery_obj, i2i_text_button, i2i_stop_btn])
        i2i_stop_btn.click(fn=stop_i2i, outputs=[i2i_text_button, i2i_stop_btn], cancels=[i2i_event])

        upscale_event = upscale_btn.click(fn=upscale_fn, inputs=[upscale_image_input, scale_by], outputs=[upscale_output, upscale_btn, upscale_stop])
        upscale_stop.click(fn=stop_upscale, outputs=[upscale_btn, upscale_stop], cancels=[upscale_event])

demo.queue(concurrency_count=64, max_size=80, api_open=False).launch(max_threads=256)