import gradio as gr import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols #from text.symbols import symbols_ftgra from text import text_to_sequence from scipy.io.wavfile import write def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm def load_model(model_path, hps): net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None) return net_g hps = utils.get_hparams_from_file("configs/vctk_base.json") # Define a dictionary to store the model paths for each tab model_paths = { "Phonemes_finetuned": "fr_wa_finetuned_pho/G_125000.pth", "Graphemes_finetuned": "fr_wa_finetuned/G_198000.pth", "Phonemes": "path_to_phonemes_model.pth", "Graphemes": "wa_graphemes/G_168000.pth" } # Load the initial model net_g = load_model(model_paths["Phonemes_finetuned"], hps) def tts(text, speaker_id, tab_name): global net_g net_g = load_model(model_paths[tab_name], hps) sid = torch.LongTensor([speaker_id]) # speaker identity stn_tst = get_text(text, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ 0, 0].data.float().numpy() return "Success", (hps.data.sampling_rate, audio) def create_tab(tab_name): with gr.TabItem(tab_name): gr.Markdown(f"### {tab_name} TTS Model") tts_input1 = gr.TextArea(label="Text in Walloon (Depending on the model the input should be on phonemes or characters)", value="") tts_input2 = gr.Dropdown(label="Speaker", choices=["Male", "Female"], type="index", value="Male") tts_submit = gr.Button("Generate", variant="primary") tts_output1 = gr.Textbox(label="Message") tts_output2 = gr.Audio(label="Output") tts_submit.click(lambda text, speaker_id: tts(text, speaker_id, tab_name), [tts_input1, tts_input2], [tts_output1, tts_output2]) app = gr.Blocks() with app: gr.Markdown( """ # First Text to Speech (TTS) for Walloon Based on VITS (https://github.com/jaywalnut310/vits). Select the desired model and write the text in phonemes or graphemes depending on the model. For faster inference speed it is recommended to use short sentences. """ ) with gr.Tabs(): create_tab("Phonemes_finetuned") create_tab("Graphemes_finetuned") create_tab("Phonemes") create_tab("Graphemes") gr.Markdown( """ ### Examples | Input Text | Speaker | Input Method | |------------|---------|---------------| | li biːç ɛ l sɔlja ɛstẽ ki s maʁɡajẽ pɔ sawɛ kiː ski , dɛ døː , ɛstøː l py fwaʁ . m ɛ̃ s koː la , la k i vɛjɛ õ tsminɔː k aʁivef pjim pjam , d ɛ̃ õ bja nuː tsoː paltɔ . | Female | Phonemes | | Li bijhe et l’ solea estént ki s’ margayént po sawè kî çki, des deus, esteut l’ pus foirt. Mins ç’ côp la, la k’ i veyèt on tchminåd k' arivéve pyim piam, dins on bea noû tchôd paltot. | Male | Graphemes | """ ) app.launch()