Pipe1213 commited on
Commit
da9d3c0
1 Parent(s): d103351

Delete melspec_gen.py

Browse files
Files changed (1) hide show
  1. melspec_gen.py +0 -61
melspec_gen.py DELETED
@@ -1,61 +0,0 @@
1
- from scipy.io.wavfile import read
2
- import torch
3
- import numpy as np
4
- import os
5
- from multiprocessing import Pool
6
- #from tqdm import tqdm
7
-
8
- # Change here
9
- base="/mnt/beegfs/home/espinosa/wallon/wallon_ms_02/p02/"
10
-
11
- hann_window = {}
12
- def load_wav_to_torch(full_path):
13
- sampling_rate, data = read(full_path)
14
- # data, sampling_rate = librosa.load(full_path)
15
- return torch.FloatTensor(data.astype(np.float32)), sampling_rate
16
-
17
- def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
18
- if torch.min(y) < -1.:
19
- print('min value is ', torch.min(y))
20
- if torch.max(y) > 1.:
21
- print('max value is ', torch.max(y))
22
-
23
- global hann_window
24
- dtype_device = str(y.dtype) + '_' + str(y.device)
25
- wnsize_dtype_device = str(win_size) + '_' + dtype_device
26
- if wnsize_dtype_device not in hann_window:
27
- hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
28
-
29
- y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
30
- y = y.squeeze(1)
31
-
32
- spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
33
- center=center, pad_mode='reflect', normalized=False, onesided=True)
34
-
35
- spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
36
- return spec
37
-
38
- def get_audio(filename):
39
- max_wave_length = 32768.0
40
- filter_length = 1024
41
- hop_length = 256
42
- win_length = 1024
43
- audio, sampling_rate = load_wav_to_torch(filename)
44
- audio_norm = audio / max_wave_length
45
- audio_norm = audio_norm.unsqueeze(0)
46
- spec_filename = filename.replace(".wav", ".spec.pt")
47
- spec = spectrogram_torch(audio_norm, filter_length,
48
- sampling_rate, hop_length, win_length,
49
- center=False)
50
- spec = torch.squeeze(spec, 0)
51
- torch.save(spec, spec_filename)
52
-
53
- if __name__=="__main__":
54
- waves = []
55
- for wav_name in os.listdir(base):
56
- wav_path = os.path.join(base, wav_name)
57
- if wav_path.endswith(".wav"):
58
- waves.append(wav_path)
59
-
60
- for wav_path in waves:
61
- get_audio(wav_path)