Pipe1213's picture
Update app.py
038f0e8 verified
raw
history blame
3.94 kB
import gradio as gr
import os
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
#from text.symbols import symbols_ftgra
from text import text_to_sequence
from scipy.io.wavfile import write
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def load_model(model_path, hps):
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None)
return net_g
hps = utils.get_hparams_from_file("configs/vctk_base.json")
# Define a dictionary to store the model paths for each tab
model_paths = {
"Phonemes_finetuned": "fr_wa_finetuned_pho/G_125000.pth",
"Graphemes_finetuned": "fr_wa_finetuned/G_198000.pth",
"Phonemes": "path_to_phonemes_model.pth",
"Graphemes": "wa_graphemes/G_168000.pth"
}
# Load the initial model
net_g = load_model(model_paths["Phonemes_finetuned"], hps)
def tts(text, speaker_id, tab_name):
global net_g
net_g = load_model(model_paths[tab_name], hps)
sid = torch.LongTensor([speaker_id]) # speaker identity
stn_tst = get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
0, 0].data.float().numpy()
return "Success", (hps.data.sampling_rate, audio)
def create_tab(tab_name):
with gr.TabItem(tab_name):
gr.Markdown(f"### {tab_name} TTS Model")
tts_input1 = gr.TextArea(label="Text in Walloon (Depending on the model the input should be on phonemes or characters)", value="")
tts_input2 = gr.Dropdown(label="Speaker", choices=["Male", "Female"], type="index", value="Male")
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Message")
tts_output2 = gr.Audio(label="Output")
tts_submit.click(lambda text, speaker_id: tts(text, speaker_id, tab_name), [tts_input1, tts_input2], [tts_output1, tts_output2])
app = gr.Blocks()
with app:
gr.Markdown(
"""
# First Text to Speech (TTS) for Walloon
Based on VITS (https://github.com/jaywalnut310/vits).
Select the desired model and write the text in phonemes or graphemes depending on the model.
For faster inference speed it is recommended to use short sentences.
"""
)
with gr.Tabs():
create_tab("Phonemes_finetuned")
create_tab("Graphemes_finetuned")
create_tab("Phonemes")
create_tab("Graphemes")
gr.Markdown(
"""
### Examples
| Input Text | Speaker | Input Method |
|------------|---------|---------------|
| li biːç ɛ l sɔlja ɛstẽ ki s maʁɡajẽ pɔ sawɛ kiː ski , dɛ døː , ɛstøː l py fwaʁ . m ɛ̃ s koː la , la k i vɛjɛ õ tsminɔː k aʁivef pjim pjam , d ɛ̃ õ bja nuː tsoː paltɔ . | Female | Phonemes |
| Li bijhe et l’ solea estént ki s’ margayént po sawè kî çki, des deus, esteut l’ pus foirt. Mins ç’ côp la, la k’ i veyèt on tchminåd k' arivéve pyim piam, dins on bea noû tchôd paltot. | Male | Graphemes |
"""
)
app.launch()