Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') | |
import json | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
import commons | |
import utils | |
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
#from text.symbols import symbols_ftgra | |
from text import text_to_sequence | |
from scipy.io.wavfile import write | |
def get_text(text, hps): | |
text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def load_model(model_path, hps): | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None) | |
return net_g | |
hps = utils.get_hparams_from_file("configs/vctk_base.json") | |
# Define a dictionary to store the model paths for each tab | |
model_paths = { | |
"Phonemes_finetuned": "fr_wa_finetuned_pho/G_125000.pth", | |
"Graphemes_finetuned": "fr_wa_finetuned/G_198000.pth", | |
"Phonemes": "path_to_phonemes_model.pth", | |
"Graphemes": "wa_graphemes/G_168000.pth" | |
} | |
# Load the initial model | |
net_g = load_model(model_paths["Phonemes_finetuned"], hps) | |
def tts(text, speaker_id, tab_name): | |
global net_g | |
net_g = load_model(model_paths[tab_name], hps) | |
sid = torch.LongTensor([speaker_id]) # speaker identity | |
stn_tst = get_text(text, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) | |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ | |
0, 0].data.float().numpy() | |
return "Success", (hps.data.sampling_rate, audio) | |
def create_tab(tab_name): | |
with gr.TabItem(tab_name): | |
gr.Markdown(f"### {tab_name} TTS Model") | |
tts_input1 = gr.TextArea(label="Text in Walloon (Depending on the model the input should be on phonemes or characters)", value="") | |
tts_input2 = gr.Dropdown(label="Speaker", choices=["Male", "Female"], type="index", value="Male") | |
tts_submit = gr.Button("Generate", variant="primary") | |
tts_output1 = gr.Textbox(label="Message") | |
tts_output2 = gr.Audio(label="Output") | |
tts_submit.click(lambda text, speaker_id: tts(text, speaker_id, tab_name), [tts_input1, tts_input2], [tts_output1, tts_output2]) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown( | |
""" | |
# First Text to Speech (TTS) for Walloon | |
Based on VITS (https://github.com/jaywalnut310/vits). | |
Select the desired model and write the text in phonemes or graphemes depending on the model. | |
For faster inference speed it is recommended to use short sentences. | |
""" | |
) | |
with gr.Tabs(): | |
create_tab("Phonemes_finetuned") | |
create_tab("Graphemes_finetuned") | |
create_tab("Phonemes") | |
create_tab("Graphemes") | |
gr.Markdown( | |
""" | |
### Examples | |
| Input Text | Speaker | Input Method | | |
|------------|---------|---------------| | |
| li biːç ɛ l sɔlja ɛstẽ ki s maʁɡajẽ pɔ sawɛ kiː ski , dɛ døː , ɛstøː l py fwaʁ . m ɛ̃ s koː la , la k i vɛjɛ õ tsminɔː k aʁivef pjim pjam , d ɛ̃ õ bja nuː tsoː paltɔ . | Female | Phonemes | | |
| Li bijhe et l’ solea estént ki s’ margayént po sawè kî çki, des deus, esteut l’ pus foirt. Mins ç’ côp la, la k’ i veyèt on tchminåd k' arivéve pyim piam, dins on bea noû tchôd paltot. | Male | Graphemes | | |
""" | |
) | |
app.launch() | |