File size: 12,707 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>

#include <THC/THC.h>
#include <THC/THCAtomics.cuh>
#include <THC/THCDeviceUtils.cuh>

// TODO make it in a common file
#define CUDA_1D_KERNEL_LOOP(i, n)                            \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
       i += blockDim.x * gridDim.x)


template <typename T>
__device__ T bilinear_interpolate(const T* bottom_data,

    const int height, const int width,

    T y, T x,

    const int index /* index for debug only*/) {

  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    //empty
    return 0;
  }

  if (y <= 0) y = 0;
  if (x <= 0) x = 0;

  int y_low = (int) y;
  int x_low = (int) x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T) y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T) x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  // do bilinear interpolation
  T v1 = bottom_data[y_low * width + x_low];
  T v2 = bottom_data[y_low * width + x_high];
  T v3 = bottom_data[y_high * width + x_low];
  T v4 = bottom_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
__global__ void RoIAlignForward(const int nthreads, const T* bottom_data,

    const T spatial_scale, const int channels,

    const int height, const int width,

    const int pooled_height, const int pooled_width,

    const int sampling_ratio,

    const T* bottom_rois, T* top_data) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[1] * spatial_scale;
    T roi_start_h = offset_bottom_rois[2] * spatial_scale;
    T roi_end_w = offset_bottom_rois[3] * spatial_scale;
    T roi_end_h = offset_bottom_rois[4] * spatial_scale;
    // T roi_start_w = round(offset_bottom_rois[1] * spatial_scale);
    // T roi_start_h = round(offset_bottom_rois[2] * spatial_scale);
    // T roi_end_w = round(offset_bottom_rois[3] * spatial_scale);
    // T roi_end_h = round(offset_bottom_rois[4] * spatial_scale);

    // Force malformed ROIs to be 1x1
    T roi_width = max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy ++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix ++)
      {
        const T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w);

        T val = bilinear_interpolate(offset_bottom_data, height, width, y, x, index);
        output_val += val;
      }
    }
    output_val /= count;

    top_data[index] = output_val;
  }
}


template <typename T>
__device__ void bilinear_interpolate_gradient(

    const int height, const int width,

    T y, T x,

    T & w1, T & w2, T & w3, T & w4,

    int & x_low, int & x_high, int & y_low, int & y_high,

    const int index /* index for debug only*/) {

  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    //empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0) y = 0;
  if (x <= 0) x = 0;

  y_low = (int) y;
  x_low = (int) x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T) y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T) x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = bottom_data[y_low * width + x_low];
  // T v2 = bottom_data[y_low * width + x_high];
  // T v3 = bottom_data[y_high * width + x_low];
  // T v4 = bottom_data[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  return;
}

template <typename T>
__global__ void RoIAlignBackwardFeature(const int nthreads, const T* top_diff,

    const int num_rois, const T spatial_scale,

    const int channels, const int height, const int width,

    const int pooled_height, const int pooled_width,

    const int sampling_ratio,

    T* bottom_diff,

    const T* bottom_rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[1] * spatial_scale;
    T roi_start_h = offset_bottom_rois[2] * spatial_scale;
    T roi_end_w = offset_bottom_rois[3] * spatial_scale;
    T roi_end_h = offset_bottom_rois[4] * spatial_scale;
    // T roi_start_w = round(offset_bottom_rois[1] * spatial_scale);
    // T roi_start_h = round(offset_bottom_rois[2] * spatial_scale);
    // T roi_end_w = round(offset_bottom_rois[3] * spatial_scale);
    // T roi_end_h = round(offset_bottom_rois[4] * spatial_scale);

    // Force malformed ROIs to be 1x1
    T roi_width = max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height * width;

    int top_offset    = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_top_diff = top_diff + top_offset;
    const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy ++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix ++)
      {
        const T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(height, width, y, x,
            w1, w2, w3, w4,
            x_low, x_high, y_low, y_high,
            index);

        T g1 = top_diff_this_bin * w1 / count;
        T g2 = top_diff_this_bin * w2 / count;
        T g3 = top_diff_this_bin * w3 / count;
        T g4 = top_diff_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0)
        {
          atomicAdd(offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1));
          atomicAdd(offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2));
          atomicAdd(offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3));
          atomicAdd(offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
} // RoIAlignBackward


at::Tensor ROIAlign_forward_cuda(const at::Tensor& input,

                                 const at::Tensor& rois,

                                 const float spatial_scale,

                                 const int pooled_height,

                                 const int pooled_width,

                                 const int sampling_ratio) {
  AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
  AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options());
  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  dim3 grid(std::min(THCCeilDiv(output_size, 512L), 4096L));
  dim3 block(512);

  if (output.numel() == 0) {
    THCudaCheck(cudaGetLastError());
    return output;
  }

  AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIAlign_forward", [&] {
    RoIAlignForward<scalar_t><<<grid, block, 0, stream>>>(
         output_size,
         input.contiguous().data_ptr<scalar_t>(),
         spatial_scale,
         channels,
         height,
         width,
         pooled_height,
         pooled_width,
         sampling_ratio,
         rois.contiguous().data_ptr<scalar_t>(),
         output.data_ptr<scalar_t>());
  });
  THCudaCheck(cudaGetLastError());
  return output;
}

// TODO remove the dependency on input and use instead its sizes -> save memory
at::Tensor ROIAlign_backward_cuda(const at::Tensor& grad,

                                  const at::Tensor& rois,

                                  const float spatial_scale,

                                  const int pooled_height,

                                  const int pooled_width,

                                  const int batch_size,

                                  const int channels,

                                  const int height,

                                  const int width,

                                  const int sampling_ratio) {
  AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
  AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");

  auto num_rois = rois.size(0);
  auto grad_input = at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  dim3 grid(std::min(THCCeilDiv(grad.numel(), 512L), 4096L));
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    THCudaCheck(cudaGetLastError());
    return grad_input;
  }

  AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "ROIAlign_backward", [&] {
    RoIAlignBackwardFeature<scalar_t><<<grid, block, 0, stream>>>(
         grad.numel(),
         grad.contiguous().data_ptr<scalar_t>(),
         num_rois,
         spatial_scale,
         channels,
         height,
         width,
         pooled_height,
         pooled_width,
         sampling_ratio,
         grad_input.data_ptr<scalar_t>(),
         rois.contiguous().data_ptr<scalar_t>());
  });
  THCudaCheck(cudaGetLastError());
  return grad_input;
}