import gradio as gr from bs4 import BeautifulSoup from langchain.embeddings import HuggingFaceEmbeddings import pickle import torch import io class CPU_Unpickler(pickle.Unpickler): def find_class(self, module, name): if module == 'torch.storage' and name == '_load_from_bytes': return lambda b: torch.load(io.BytesIO(b), map_location='cpu') else: return super().find_class(module, name) def get_hugging_face_model(): model_name = "mchochlov/codebert-base-cd-ft" hf = HuggingFaceEmbeddings(model_name=model_name) return hf def get_db(): with open("codesearchdb.pickle", "rb") as f: db = CPU_Unpickler(f).load() return db def get_similar_links(query, db, embeddings): embedding_vector = embeddings.embed_query(query) docs_and_scores = db.similarity_search_by_vector(embedding_vector, k = 10) hrefs = [] for docs in docs_and_scores: html_doc = docs.page_content soup = BeautifulSoup(html_doc, 'html.parser') href = [a['href'] for a in soup.find_all('a', href=True)] hrefs.append(href) links = [] for href_list in hrefs: for link in href_list: links.append(link) return links def find_similar_questions(text_input): embedding_vector = get_hugging_face_model() db = get_db() query = text_input answer = get_similar_links(query, db, embedding_vector) return "\n".join(set(answer)) iface = gr.Interface( fn=find_similar_questions, inputs=gr.inputs.Textbox(lines=20, label="Enter a Code Example"), outputs=gr.outputs.Textbox(label="Similar Questions on Leetcode"), title="📒 DSASearch Engine 🤖", description="Find similar questions on Leetcode based on a code example.", allow_flagging=False, ) iface.launch()