Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
import pickle
|
5 |
+
import torch
|
6 |
+
import io
|
7 |
+
|
8 |
+
class CPU_Unpickler(pickle.Unpickler):
|
9 |
+
def find_class(self, module, name):
|
10 |
+
if module == 'torch.storage' and name == '_load_from_bytes':
|
11 |
+
return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
|
12 |
+
else: return super().find_class(module, name)
|
13 |
+
|
14 |
+
|
15 |
+
def get_hugging_face_model():
|
16 |
+
model_name = "mchochlov/codebert-base-cd-ft"
|
17 |
+
hf = HuggingFaceEmbeddings(model_name=model_name)
|
18 |
+
return hf
|
19 |
+
|
20 |
+
|
21 |
+
def get_db():
|
22 |
+
with open("codesearchdb.pickle", "rb") as f:
|
23 |
+
db = CPU_Unpickler(f).load()
|
24 |
+
return db
|
25 |
+
|
26 |
+
|
27 |
+
def get_similar_links(query, db, embeddings):
|
28 |
+
embedding_vector = embeddings.embed_query(query)
|
29 |
+
docs_and_scores = db.similarity_search_by_vector(embedding_vector, k = 10)
|
30 |
+
hrefs = []
|
31 |
+
for docs in docs_and_scores:
|
32 |
+
html_doc = docs.page_content
|
33 |
+
soup = BeautifulSoup(html_doc, 'html.parser')
|
34 |
+
href = [a['href'] for a in soup.find_all('a', href=True)]
|
35 |
+
hrefs.append(href)
|
36 |
+
links = []
|
37 |
+
for href_list in hrefs:
|
38 |
+
for link in href_list:
|
39 |
+
links.append(link)
|
40 |
+
return links
|
41 |
+
|
42 |
+
|
43 |
+
def find_similar_questions(text_input):
|
44 |
+
embedding_vector = get_hugging_face_model()
|
45 |
+
db = get_db()
|
46 |
+
query = text_input
|
47 |
+
answer = get_similar_links(query, db, embedding_vector)
|
48 |
+
return "\n".join(set(answer))
|
49 |
+
|
50 |
+
|
51 |
+
iface = gr.Interface(
|
52 |
+
fn=find_similar_questions,
|
53 |
+
inputs=gr.inputs.Textbox(lines=20, label="Enter a Code Example"),
|
54 |
+
outputs=gr.outputs.Textbox(label="Similar Questions on Leetcode"),
|
55 |
+
title="π DSASearch Engine π€",
|
56 |
+
description="Find similar questions on Leetcode based on a code example.",
|
57 |
+
allow_flagging=False,
|
58 |
+
)
|
59 |
+
|
60 |
+
iface.launch()
|