import gradio as gr from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig, pipeline, ) model_name = "sagard21/python-code-explainer" tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model.eval() pipe = pipeline("summarization", model=model_name, config=config, tokenizer=tokenizer) def generate_text(text_prompt): response = pipe(text_prompt) return response[0]['summary_text'] textbox1 = gr.Textbox(value = """ class Solution(object): def isValid(self, s): stack = [] mapping = {")": "(", "}": "{", "]": "["} for char in s: if char in mapping: top_element = stack.pop() if stack else '#' if mapping[char] != top_element: return False else: stack.append(char) return not stack""") textbox2 = gr.Textbox() image_code = gr.Image(value = "https://huggingface.co/spaces/PinoCorgi/CodeExplainerPython/blob/main/code.jpg") image_output = gr.Image(value = "https://huggingface.co/spaces/PinoCorgi/CodeExplainerPython/blob/main/output.jpg") demo = gr.Interface(fn = generate_text, inputs = textbox1, outputs = textbox2) image_code image_output if __name__ == "__main__": print(f"The Inference will take approximately 1 min 30 Seconds. Attached are example images of input and output.") demo.launch()