Spaces:
Runtime error
Runtime error
File size: 1,449 Bytes
1cae22b 5a98f40 b8fb48a 5a98f40 1cae22b 3d408c3 98dbfb1 3d408c3 93e85ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
AutoConfig,
pipeline,
)
model_name = "sagard21/python-code-explainer"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model.eval()
pipe = pipeline("summarization", model=model_name, config=config, tokenizer=tokenizer)
def generate_text(text_prompt):
response = pipe(text_prompt)
return response[0]['summary_text']
textbox1 = gr.Textbox(value = """
class Solution(object):
def isValid(self, s):
stack = []
mapping = {")": "(", "}": "{", "]": "["}
for char in s:
if char in mapping:
top_element = stack.pop() if stack else '#'
if mapping[char] != top_element:
return False
else:
stack.append(char)
return not stack""")
textbox2 = gr.Textbox()
if __name__ == "__main__":
gr.Textbox("The Inference Takes about 1 min 30 seconds")
with gr.Blocks() as demo:
gr.Interface(fn = generate_text, inputs = textbox1, outputs = textbox2)
with gr.Row():
gr.Image(value = "output.jpg", label = "Sample Explaination in Natural Language")
gr.Image(value = "code.jpg", label = "Sample Code for Checking if a Binary Tree is Mirrored")
demo.launch() |