Spaces:
Runtime error
Runtime error
import sys | |
import gradio as gr | |
# sys.path.append("../") | |
sys.path.append("CLIP_explainability/Transformer-MM-Explainability/") | |
import torch | |
import CLIP.clip as clip | |
from clip_grounding.utils.image import pad_to_square | |
from clip_grounding.datasets.png import ( | |
overlay_relevance_map_on_image, | |
) | |
from CLIP_explainability.utils import interpret, show_img_heatmap, show_heatmap_on_text | |
clip.clip._MODELS = { | |
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", | |
} | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-B/32", device=device, jit=False) | |
# Gradio Section: | |
def run_demo(image, text): | |
orig_image = pad_to_square(image) | |
img = preprocess(orig_image).unsqueeze(0).to(device) | |
text_input = clip.tokenize([text]).to(device) | |
R_text, R_image = interpret(model=model, image=img, texts=text_input, device=device) | |
image_relevance = show_img_heatmap(R_image[0], img, orig_image=orig_image, device=device, show=False) | |
overlapped = overlay_relevance_map_on_image(image, image_relevance) | |
text_scores, text_tokens_decoded = show_heatmap_on_text(text, text_input, R_text[0], show=False) | |
highlighted_text = [] | |
for i, token in enumerate(text_tokens_decoded): | |
highlighted_text.append((str(token), float(text_scores[i]))) | |
return overlapped, highlighted_text | |
input_img = gr.inputs.Image(type='pil', label="Original Image") | |
input_txt = "text" | |
inputs = [input_img, input_txt] | |
outputs = [gr.inputs.Image(type='pil', label="Output Image"), "highlight"] | |
iface = gr.Interface(fn=run_demo, | |
inputs=inputs, | |
outputs=outputs, | |
title="CLIP Grounding Explainability", | |
description="A demonstration based on the Generic Attention-model Explainability method for Interpreting Bi-Modal Transformers by Chefer et al. (2021): https://github.com/hila-chefer/Transformer-MM-Explainability.", | |
examples=[["example_images/London.png", "London Eye"], | |
["example_images/London.png", "Big Ben"], | |
["example_images/harrypotter.png", "Harry"], | |
["example_images/harrypotter.png", "Hermione"], | |
["example_images/harrypotter.png", "Ron"], | |
["example_images/Amsterdam.png", "Amsterdam canal"], | |
["example_images/Amsterdam.png", "Old buildings"], | |
["example_images/Amsterdam.png", "Pink flowers"], | |
["example_images/dogs_on_bed.png", "Two dogs"], | |
["example_images/dogs_on_bed.png", "Book"], | |
["example_images/dogs_on_bed.png", "Cat"]]) | |
iface.launch(debug=True) |