|
|
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
import gradio as gr |
|
import torch |
|
|
|
processor = AutoProcessor.from_pretrained('microsoft/git-base') |
|
model = AutoModelForCausalLM.from_pretrained('./instagram_caption_generating_model') |
|
|
|
def predict(image): |
|
try: |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
inputs = {key: value.to(device) for key, value in inputs.items()} |
|
model.to(device) |
|
|
|
outputs = model.generate(**inputs) |
|
|
|
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0] |
|
|
|
return caption |
|
|
|
except Exception as e: |
|
print("Error during prediction:", str(e)) |
|
return "Error: " + str(e) |
|
|
|
with gr.Blocks() as demo: |
|
image = gr.Image(type="pil") |
|
predict_btn = gr.Button("Predict", variant="primary") |
|
output = gr.Textbox(label="Generated Caption") |
|
|
|
inputs = [image] |
|
outputs = [output] |
|
|
|
predict_btn.click(predict, inputs=inputs, outputs=outputs) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|