Spaces:
Build error
Build error
PascalNotin
commited on
Commit
•
10d0895
1
Parent(s):
8c638cc
Changed text
Browse files
app.py
CHANGED
@@ -10,29 +10,10 @@ import matplotlib.pyplot as plt
|
|
10 |
import seaborn as sns
|
11 |
import gradio as gr
|
12 |
|
13 |
-
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
|
14 |
-
unk_token="[UNK]",
|
15 |
-
sep_token="[SEP]",
|
16 |
-
pad_token="[PAD]",
|
17 |
-
cls_token="[CLS]",
|
18 |
-
mask_token="[MASK]"
|
19 |
-
)
|
20 |
#######################################################################################################################################
|
21 |
############################################### HELPER FUNCTIONS ####################################################################
|
22 |
#######################################################################################################################################
|
23 |
|
24 |
-
import torch
|
25 |
-
import transformers
|
26 |
-
from transformers import PreTrainedTokenizerFast
|
27 |
-
import tranception
|
28 |
-
import datasets
|
29 |
-
from tranception import config, model_pytorch
|
30 |
-
import pandas as pd
|
31 |
-
import matplotlib.pyplot as plt
|
32 |
-
import seaborn as sns
|
33 |
-
import numpy as np
|
34 |
-
import gradio as gr
|
35 |
-
|
36 |
AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
|
37 |
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
|
38 |
unk_token="[UNK]",
|
@@ -166,7 +147,6 @@ def score_and_create_matrix_all_singles(sequence,mutation_range_start=None,mutat
|
|
166 |
score_heatmaps.append(create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab))
|
167 |
window_start += max_number_positions_per_heatmap
|
168 |
window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
|
169 |
-
print(score_heatmaps)
|
170 |
return score_heatmaps, suggest_mutations(scores)
|
171 |
|
172 |
def extract_sequence(example):
|
@@ -186,7 +166,7 @@ def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end)
|
|
186 |
tranception_design = gr.Blocks()
|
187 |
|
188 |
with tranception_design:
|
189 |
-
gr.Markdown("#
|
190 |
gr.Markdown(" Perform in silico directed evolution with Tranception to iteratively improve the fitness of a protein of interest, one mutation at a time. At each step, the Tranception model computes the log likelihood ratios of all possible single amino acid substitution Vs the starting sequence, and outputs a fitness heatmap and recommandations to guide the selection of the mutation to apply.")
|
191 |
|
192 |
with gr.Tabs():
|
@@ -247,7 +227,7 @@ with tranception_design:
|
|
247 |
gr.Markdown("<br>")
|
248 |
gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
|
249 |
gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
|
250 |
-
output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range",type="filepath") #Using Gallery to
|
251 |
|
252 |
output_recommendations = gr.Textbox(label="Mutation recommendations")
|
253 |
|
|
|
10 |
import seaborn as sns
|
11 |
import gradio as gr
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
#######################################################################################################################################
|
14 |
############################################### HELPER FUNCTIONS ####################################################################
|
15 |
#######################################################################################################################################
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
|
18 |
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
|
19 |
unk_token="[UNK]",
|
|
|
147 |
score_heatmaps.append(create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab))
|
148 |
window_start += max_number_positions_per_heatmap
|
149 |
window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
|
|
|
150 |
return score_heatmaps, suggest_mutations(scores)
|
151 |
|
152 |
def extract_sequence(example):
|
|
|
166 |
tranception_design = gr.Blocks()
|
167 |
|
168 |
with tranception_design:
|
169 |
+
gr.Markdown("# In silico directed evolution for protein redesign with Tranception")
|
170 |
gr.Markdown(" Perform in silico directed evolution with Tranception to iteratively improve the fitness of a protein of interest, one mutation at a time. At each step, the Tranception model computes the log likelihood ratios of all possible single amino acid substitution Vs the starting sequence, and outputs a fitness heatmap and recommandations to guide the selection of the mutation to apply.")
|
171 |
|
172 |
with gr.Tabs():
|
|
|
227 |
gr.Markdown("<br>")
|
228 |
gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
|
229 |
gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
|
230 |
+
output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range",type="filepath") #Using Gallery to break down large scoring matrices into smaller images
|
231 |
|
232 |
output_recommendations = gr.Textbox(label="Mutation recommendations")
|
233 |
|